JupyterHub with GPU
Create a jupyterhub instance with GPU support enabled.
setup
Create conda environment that we can use for a jupyter kernel
conda create -y -n kernel_test python=3 ipykernel && conda activate kernel_test python -m ipykernel install --user --name kernel_test
NOTE: You can specific the python version for you conda environment with python=3 Please take care what python version is compatible with you required packages.
Install required packages
For pytorch you can find information here and for TensorFlow here.
As an example I use the following pytorch installation:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Start jupyter notebook with GPU
Go here and select:
- Select a location for your server: on the cluster (default option)
- Partition to use: gpu
- Partition to use: gpu
- Memory (in MB): desired memory
- Number of CPUs: desired CPU count
- Maximum execution time (hours:minutes:seconds): maximum amount of time the notebook is available
- Extra options: --gres=gpu:1 (default when selecting GPU, gpu:x for x amount of GPUs)
Test GPU availability
Pytorch
def check_all_cuda_devices():
device_count = torch.cuda.device_count()
for i in range(device_count):
print('>>>> torch.cuda.device({})'.format(i))
result = torch.cuda.device(i)
print(result, '\n')
print('>>>> torch.cuda.get_device_name({})'.format(i))
result = torch.cuda.get_device_name(i)
print(result, '\n')
def check_cuda():
print('>>>> torch.cuda.is_available()')
result = torch.cuda.is_available()
print(result, '\n')
print('>>>> torch.cuda.device_count()')
result = torch.cuda.device_count()
print(result, '\n')
print('>>>> torch.cuda.current_device()')
result = torch.cuda.current_device()
print(result, '\n')
print('>>>> torch.cuda.device(0)')
result = torch.cuda.device(0)
print(result, '\n')
print('>>>> torch.cuda.get_device_name(0)')
result = torch.cuda.get_device_name(0)
print(result, '\n')
check_all_cuda_devices()
def check_cuda_ops():
print('>>>> torch.zeros(2, 3)')
zeros = torch.zeros(2, 3)
print(zeros, '\n')
print('>>>> torch.zeros(2, 3).cuda()')
cuda_zero = torch.zeros(2, 3).cuda()
print(cuda_zero, '\n')
print('>>>> torch.tensor([[1, 2, 3], [4, 5, 6]])')
tensor_a = torch.tensor([[1, 2, 3], [4, 5, 6]]).cuda()
print(tensor_a, '\n')
print('>>>> tensor_a + cuda_zero')
sum = tensor_a + cuda_zero
print(sum, '\n')
print('>>>> tensor_a * cuda_twos')
tensor_a = tensor_a.to(torch.float)
cuda_zero = cuda_zero.to(torch.float)
cuda_twos = (cuda_zero + 1.0) * 2.0
product = tensor_a * cuda_twos
print(product, '\n')
print('>>>> torch.matmul(tensor_a, cuda_twos.T)')
mat_mul = torch.matmul(tensor_a, cuda_twos.T)
print(mat_mul, '\n')
try:
get_version()
except Exception as e:
print('get_version() failed, exception message below:')
print(e)
try:
check_cuda()
except Exception as e:
print('check_cuda() failed, exception message below:')
print(e)
try:
check_cuda_ops()
except Exception as e:
print('check_cuda_ops() failed, exception message below:')
print(e)
Tensorflow
import tensorflow as tf
hasGPUSupport = tf.test.is_built_with_cuda()
gpuList = tf.config.list_physical_devices('GPU')
print("Tensorflow Compiled with CUDA/GPU Support:", hasGPUSupport)
print("Tensorflow can access", len(gpuList), "GPU")
print("Accessible GPUs are:")
print(gpuList)
tf.debugging.set_log_device_placement(True)
# Place tensors on the GPU
with tf.device('device:GPU:0'):
a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
# Run on the GPU
c = tf.matmul(a, b)
print(c)