Variant annotation tutorial: Difference between revisions

From HPCwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 67: Line 67:


== Variant Effect Predictor ==
== Variant Effect Predictor ==
Various tools exist to make more precise annotations than what you can achieve using Bedtools and a GTF. Among them are Variant Effect Predictor (VEP), snpEff, and Annovar. For the current practical we will use former two.
VEP uses a cache directory that has the annotation information. On the infrastructure you are working on that directory can be found here:
  /home/formacion/COMUNES/IAMZ/data/CIHEAM/ReferenceGenome/VEP/





Revision as of 22:01, 6 March 2015

Code and tutorials for CIHEAM course. Variation annotation and function prediction sessions


Slicing and dicing of VCF files

VCF files can get very big. Being able to manipulate them and extract relevant information is important. In practice, flat text files such as VCF are currently the basis for further analysis - see the Imputation and Population practical sessions.

The first task involves selecting all called variants of chromosome 18, bgzip-ping them on-the-fly, and then indexing that file with tabix:

 tabix -h allbt.vcf.gz 18 | bgzip >BT18.vcf.gz
 tabix -p vcf BT18.vcf.gz

Annotating VCF with rs-numbers

The VCF file you are working does not yet have the dbSNP identifiers (rs-numbers) annotated. The rs-numbers of all currently known variants as databased in dbSNP can be found in this file:

 /path/to/ BT18.vcf.gz

Have a look at what is inside this file:

 gunzip -c BT18.vcf.gz | grep -v '^##' | more

or

 tabix BT18.vcf.gz 18:1-10000 | more

You can use vcftools to do many things related to VCF files. This includes annotating the VCF based on other interval-file formatted input, including other VCF files. For instance, you can annotate an interval of the VCF on the fly, by selecting that interval using tabix, and then piping it to vcf-annotate, like so:

 tabix -h BT18.vcf.gz 18:100000-101000 | vcf-annotate -a BT_incl_cons.18.vcf.gz -c CHROM,FROM,ID

Now make a new VCF file for all the variants called for chromosome 18 using this tool:

 tabix -h BT18.vcf.gz 18 | vcf-annotate -a BT_incl_cons.18.vcf.gz -c CHROM,FROM,ID | bgzip >BT18_rsnumbers.vcf.gz
 tabix -p vcf BT18_rsnumbers.vcf.gz


Extracting variants using BEDtools

You will very often want to extract variants based on interval files, e.g. a certain region on a chromosome. This can be easily achieve using the tabix command described above. However, sometimes you may want to extract a substantial number of intervals. You could use tabix in a loop, either as a shell-script or in a scripting language like Perl or Python. However, BedTools provides many utilities for manipulating interval data, such as BED, VCF, or GTF/GFF formats.

Say you are interested in the variants in all the genes lying between coordinates 1,000,000 and 2,000,000 on chromosome 18. The annotation of genes can be found in a GTF file. The GTF file for the UMD3.1 genome build can be found at Ensembl and downloaded using the command line (NOTE: the compute nodes you are working on do not have internet connectivity. This line of code is just for completeness):

 wget ftp://ftp.ensembl.org/pub/release-78/gtf/bos_taurus/Bos_taurus.UMD3.1.78.gtf.gz

The file is already downloaded and can be found here:

 /path/to/Bos_taurus.UMD3.1.78.gtf.gz

Have a quick look at what is in this file:

gunzip -c /path/to/Bos_taurus.UMD3.1.78.gtf.gz | more

Familiarise yourself with the GTF format if you have not already. For more information:

 http://www.ensembl.org/info/website/upload/gff.html

You can select the appropriate region from the GTF file:

 gunzip -c Bos_taurus.UMD3.1.78.gtf.gz | awk '$3=="gene"' | awk '$1==18&&$4>1000000&&$4<2000000' >mygenes.gtf

Subsequently you can intersect the VCF with the GTF file that contains just the genes between coordinates 1 and 2 million:

 bedtools intersect -a BT18_rsnumbers.vcf.gz -b mygenes.gtf >intersection_genes.vcf

Have a quick look at the output, and count the number of variants in this VCF (e.g. by using 'wc -l').

Now do the same, but select only the exonic variants in the same interval, from 1 to 2 million.

How many variants do you have now?


Variant Effect Predictor

Various tools exist to make more precise annotations than what you can achieve using Bedtools and a GTF. Among them are Variant Effect Predictor (VEP), snpEff, and Annovar. For the current practical we will use former two.

VEP uses a cache directory that has the annotation information. On the infrastructure you are working on that directory can be found here:

 /home/formacion/COMUNES/IAMZ/data/CIHEAM/ReferenceGenome/VEP/


 gunzip -c /home/formacion/COMUNES/IAMZ/data/CIHEAM/MULTISAMPLE_VCF/all.fb.vcf.gz | perl /home/formacion/COMUNES/IAMZ/soft/ensembl-tools-release-78/scripts/variant_effect_predictor/variant_effect_predictor.pl --dir /home/formacion/COMUNES/IAMZ/data/CIHEAM/ReferenceGenome/VEP/ --species bos_taurus -o test2.vep --fork 4 --canonical --sift b --coding_only --no_intergenic --offline --force_overwrite --vcf
 gunzip -c test2.vep.vcf.gz | grep deleterious | sed 's/;/\t/g' | awk '{gsub("AF=","",$11); print}' | awk '$11<0.15&&$11>0' | wc -l


 gunzip -c test2.vep.vcf.gz | grep deleterious | sed 's/;/ /g' | awk '{gsub("AF=","",$11); print}' | awk '$11>0.85' | sed 's/ /#_#/g' | sed 's/|/\t/g' | cut -f2 | sort | uniq -c
     1 ENSBTAG00000000027
     1 ENSBTAG00000000688
     1 ENSBTAG00000000945
     1 ENSBTAG00000006859
     1 ENSBTAG00000011844
     1 ENSBTAG00000012606
     1 ENSBTAG00000014953
     1 ENSBTAG00000017651
     1 ENSBTAG00000019443
     1 ENSBTAG00000019547
     1 ENSBTAG00000023731
     1 ENSBTAG00000030502
     1 ENSBTAG00000032427
     1 ENSBTAG00000032442
     1 ENSBTAG00000034090
     1 ENSBTAG00000037440
     1 ENSBTAG00000037576
     1 ENSBTAG00000037581
     1 ENSBTAG00000039409
     1 ENSBTAG00000039691
     2 ENSBTAG00000045571
     1 ENSBTAG00000045880
     1 ENSBTAG00000046383
     2 ENSBTAG00000047277
     1 ENSBTAG00000047301
     1 ENSBTAG00000047570
     1 ENSBTAG00000047577
     3 ENSBTAG00000047761
     1 ENSBTAG00000048135


11 ENSBTAG00000037699

 gunzip -c test2.vep.vcf.gz | grep deleterious | sed 's/;/ /g' | awk '{gsub("AF=","",$11); print}' | awk '$11<0.15' | sed 's/ /#_#/g' | sed 's/|/\t/g' | cut -f2 | sort | uniq -c | sed 's/^ \+//' | awk '$1==1' | awk '{print $2}' >genes_with1.txt

snpEff

 java -Xmx4G -jar $snpEff -dataDir ~/snpEff/data -v UMD3.1.78 sample_Bt.vcf >testresult_Bt.txt

Inferring function

from VEP output to Polyphen/Provean input

extracting fasta record.

 faOneRecord Bos_taurus.UMD3.1.pep.all.fa `cat Bos_taurus.UMD3.1.pep.all.fa | grep ENSBTAT00000063226 | awk '{print $1}' | sed 's/>//'`

Polyphen

 /lustre/nobackup/WUR/ABGC/shared/public_data_store/polyphen/polyphen-2.2.2/bin/run_pph.pl -s test1033.fa test1033.coord 
 #o_acc               	 o_pos	o_aa1	o_aa2	rsid      	acc       	   pos	aa1	aa2	nt1	nt2	        prediction	            based_on	    effect	    site	  region	    PHAT	dScore	Score1	Score2	MSAv	  Nobs	 Nstruct	 Nfilt	PDB_id	PDB_pos	PDB_ch	 ident	lengthNormASA	SecStr	MapReg	  dVol	 dProp	B-fact	 H-bonds	 AveNHet	 MinDHet	 AveNInt	 MinDInt	 AveNSit	 MinDSit	Transv	CodPos	CpG	 MinDJxn	     PfamHit	  IdPmax	  IdPSNP	  IdQmin
 ENSSSCG00000001099ENSSSCT00000001195	   368	    S	    A	          	ENSSSCG00000001099ENSSSCT00000001195	   368	  S	  A	   	   	            benign	           alignment	          	        	        	        	+0.721	-1.180	-1.901	   2	    68	        	      	             	      	      	      	       	      	      	      	      	      	        	        	        	        	        	        	        	      	      	   	        	            	  12.350	  12.350	   42.63
 ENSSSCG00000001099ENSSSCT00000001195	   453	    R	    H	          	ENSSSCG00000001099ENSSSCT00000001195	   453	  R	  H	   	   	            benign	           alignment	          	        	        	        	+0.351	-2.130	-2.481	   2	    67	        	      	             	      	      	      	       	      	      	      	      	      	        	        	        	        	        	        	        	      	      	   	        	            	  33.194	  33.194	   93.76
 ENSSSCG00000001099ENSSSCT00000001195	   431	    K	    T	          	ENSSSCG00000001099ENSSSCT00000001195	   431	  K	  T	   	   	 possibly damaging	           alignment	          	        	        	        	+1.705	-1.678	-3.383	   2	    68	        	      	             	      	      	      	       	      	      	      	      	      	        	        	        	        	        	        	        	      	      	   	        	            	   2.382	        	   68.80

What goes in:

 test1033.fa
 >ENSSSCG00000001099ENSSSCT00000001195
 MSSIEQTTEILLCLSPAEAANLKEGINFVRNKSTGKDYILFKNKSRLKACKNMCKHQGGL
 FIKDIEDLNGRSVKCTKHNWKLDVSSMKYINPPGSFCQDELVVEKDEENGVLLLELNPPN
 PWDSEPRSPEDLAFGEVQITYLTHACMDLKLGDKRMVFDPWLIGPAFARGWWLLHEPPSD
 WLERLSRADLIYISHMHSDHLSYPTLKKLAERRPDVPIYVGNTERPVFWNLNQSGVQLTN
 INVVPFGIWQQVDKNLRFMILMDGVHPEMDTCIIVEYKGHKILNTVDCTRPNGGRLPMKV
 ALMMSDFAGGASGFPMTFSGGKFTEEWKAQFIKTERKKLLNYKARLVKDLQPRIYCPFAG
 YFVESHPSDKYIKETNIKNDPNELNNLIKKNSEVVTWTPRPGATLDLGRMLKDPTDSKGI
 VEPPEGTKIYKDSWDFGPYLNILNAAIGDEIFRHSSWIKEYFTWAGFKDYNLVVRMIETD
 EDFSPLPGGYDYLVDFLDLSFPKERPSREHPYEEIRSRVDVIRHVVKNGLLWDDLYIGFQ
 TRLQRDPDIYHHLFWNHFQIKLPLTPPDWKSFLMCSG 
 test1033.coord
 ENSSSCG00000001099ENSSSCT00000001195 368        S A
 ENSSSCG00000001099ENSSSCT00000001195 453        R H
 ENSSSCG00000001099ENSSSCT00000001195 431        K T

Provean

 >ENSSSCP00000018263 pep:novel chromosome:Sscrofa10.2:12:6621092:6624938:1 gene:ENSSSCG00000017236 transcript:ENSSSCT00000018765 gene_biotype:protein_coding t transcript_biotype:protein_coding
 MTPRVGAVWLPSALLLLRVPGCLSLSGPPTAMGTKGGSLSVQCRYEEEYIDDKKYWDKSP
 CFLSWKHIVETTESAREVRRGRVSIRDDPANLTFTVTLERLTEEDAGTYCCGITAQFSVD
 PTHEVEVVVFPALGTSRPPSMPGPPTTLPATTWSFVSERETMANNLGKGPASQDPGQHPR
 SKHPSIRLLLLVFLEVPLFLGMLGAVLWVHRPLRSSESRSVAMDPVPGNTAPSAGWK
 235,G,E
 5,V,A
 22,C,Y
 34,T,I
 51,D,N
 53,K,N
 59,S,Y
 61,C,R
 64,S,L
 67,H,P
 68,I,T
 75,A,V
 108,T,K
 115,A,T
 124,E,D
 130,F,Y
 133,L,P
 142,P,A 
 155,F,I
 158,E,G
 186,I,V 
 21,G,D
 ## PROVEAN scores ##
 # VARIATION	SCORE
 235,G,E	0.076
 5,V,A	0.287
 22,C,Y	-8.028
 34,T,I	-1.932
 51,D,N	-1.613
 53,K,N	1.565
 59,S,Y	-2.140
 61,C,R	-5.826
 64,S,L	-0.437
 67,H,P	-0.511
 68,I,T	-2.664
 75,A,V	-1.061
 108,T,K	-4.051
 115,A,T	1.557
 124,E,D	-1.587
 130,F,Y	-0.983
 133,L,P	3.203
 142,P,A	-2.058
 155,F,I	0.502
 158,E,G	-0.077
 186,I,V	0.220
 21,G,D	-6.014