GPU Computing with NVIDIA CUDA WAGENINGEN UNIVERSITY & RESEARCH

Introduction to parallel computing

Wageningen on 21.06.2019

heiko.loewe@dell.com christian.schramm@dell.com most images courtesy of NVIDIA

Introduction to GPU computing with CUDA

A little bit of background

How could you increase the speed of a computing process?

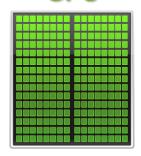
- -higher clock speed
- -more work per clock cycle
- -more processors

Introduction to GPU computing with CUDA

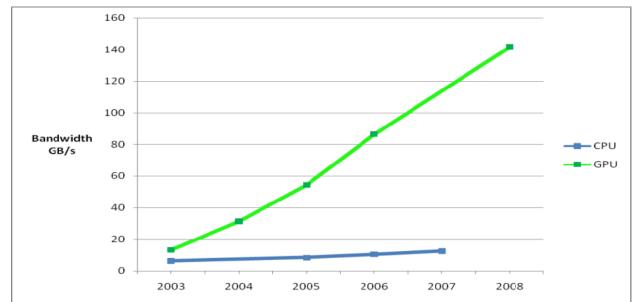
A little bit of background

Central Processing Unit (CPU)

- -consists of a few cores
- -each one is powerful and optimized for **sequential** processing.


Graphic Processing Unit (GPU)

- -consists of hundreds and thousands of smaller, less powerful cores
- -the architecture is designed for handling multiple tasks simultaneously.



CPU versus **GPU**

Supercomputing revolution

Model	Micro- architecture
Units •	
C870 GPU Computing Module [6]	
D870 Deskside Computer ^[4]	
\$870 GPU Computing Server[1]	
C1060 GPU Computing Module ^[a]	
\$1070 GPU Computing Server "400 configuration" ^(c)	
\$1070 GPU Computing Server "500 configuration"(c)	Tesla
S1075 GPU Computing Server (1020)	
Quadro Plex 2200 D2 Visual	
Computing System ⁽¹⁾	
Quadro Plex 2200 S4 Visual	
Computing System ^[7]	
C2050 GPU Computing Module ⁽¹⁶⁰⁾	Fermi
M2050 GPU Computing	
Module ⁽¹⁶¹⁾ C2070 GPU Computing	
Module ^[160]	
C2075 GPU Computing Module ^[162]	
M2070/M2070Q GPU Computing Module ^[163]	
M2090 GPU Computing Module ^[164]	
\$2050 GPU Computing Server	
\$2070 GPU Computing Server	
K10 GPU Accelerator [166]	Kepler
K20 GPU Accelerator[166][167]	
K20X GPU Accelerator ^[108]	
K40 GPU Accelerator [169]	
K80 GPU Accelerator [170]	
M4 GPU Accelerator[171][172]	Maxwell
M6 GPU Accelerator[173]	
M10 GPU Accelerator ^[174]	
M40 GPU Accelerator[172][175]	
M60 GPU Accelerator[176]	
P4 GPU Accelerator [177]	Pascal
P6 GPU Accelerator (178)(179)	Pascal
P40 GPU Accelerator [177]	
P40 GPU Accelerator	
P100 GPU Accelerator (Mezzanine) ^(100)[101)	
P100 GPU Accelerator (16 GB	
Card) ⁽¹⁸²⁾	
P100 GPU Accelerator (12 GB Card) ^[162]	
V100 GPU Accelerator (Mezzanine) ^{[183][184][183]}	Volta
V100 GPU Accelerator (PCIe card) ^{(183)[184][185]}	
T4 GPU Accelerator (PCIe card) (1827)	Turing

	Micro- architecture	Launch	Chips	Core clock (MHz)	Shaders			Memory					Processing power (GFLOPS) ^[a]			CUDA		
Model					Cuda cores (total)	Base clock (MHz)	Max boost clock (MHz) ^[c]	Bus type	Bus width (bit)	Size (GB)	Clock (MT/s)		Single precision (MAD+MUL)	Single precision (MAD or FMA)	Double precision (FMA)	compute ability ^[b]	te (wette)	Notes, form_factor
Units \$	4	+	+	+	+	MHz ♦	MHz ♦	+	+	÷	÷	+	+	+	+	+	W \$	\$
K80 GPU Accelerator ^[170]		November 17, 2014	2× GK210	N/A	4992	560	875	GDDR5	2× 384	2× 12	5000	2× 240	No	5591–8736	1864–2912	3.7	300	Internal PCIe GPU (full-height, dual-slot)
T4 GPU Accelerator (PCIe card) ^[188] [187]	Turing	September 12, 2018	1× TU104	N/A	2560	585	1590	GDDR6	256	16	Unknown	320	No	8100	Unknown	7.5	70	PCIe card

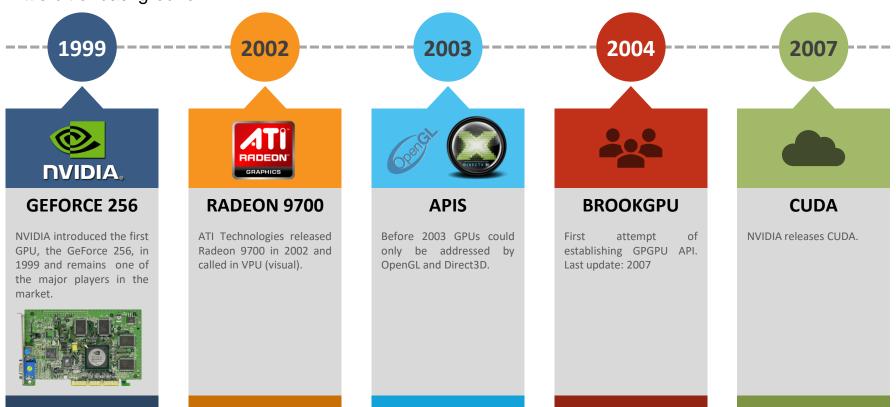
A little bit of background

3dfx Voodoo and NVIDIA GeForce 256

VGA interfaces

NVIDIA K80 (look familiar?)

You cannot even attach a monitor. ...still PCI though



NVIDIA Pascal

This one does not even have PCI. Clips right onto the main board.

A little bit of background

What is CUDA?

A little bit of background

CUDA stands for **C**ompute **U**nified **D**evice **A**rchitecture. It is a parallel computing platform (using a GPU) and a programming model (using code). CUDA is an extension of C and fully supports C++.

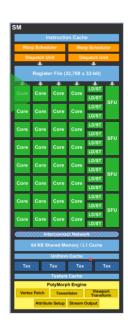
Flynn's Taxonomy introduced in 1966:

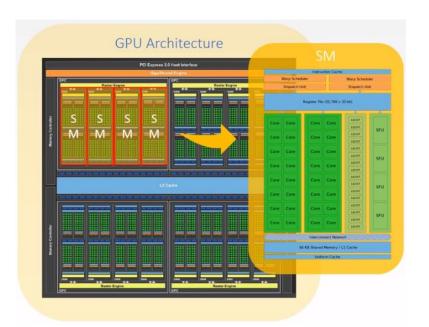
Single Instruction Single Datum (PC)
Single Instruction Multiple Data (GPU)
Multiple Instruction Single Datum (Fault Tolerance)
Multiple Instruction Multiple Data (distributed systems, autonomous processors)

Architecture

CUDA Core:

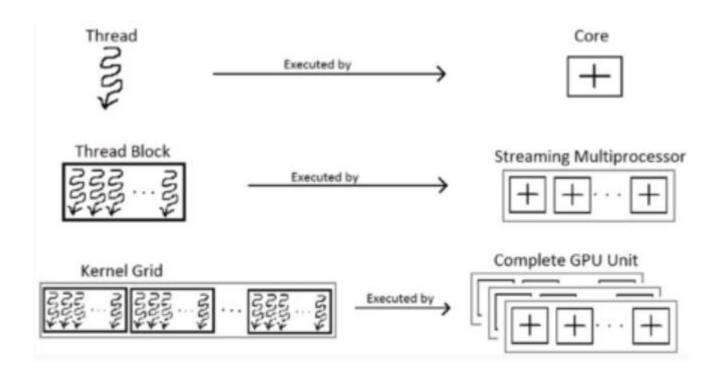
- -Smallest building block of a GPU.
- -Executes computations ("threads")




Stream Multiprocessor:

-Collection of CUDA Cores including a Scheduler

GPU:


-Collection of SMs

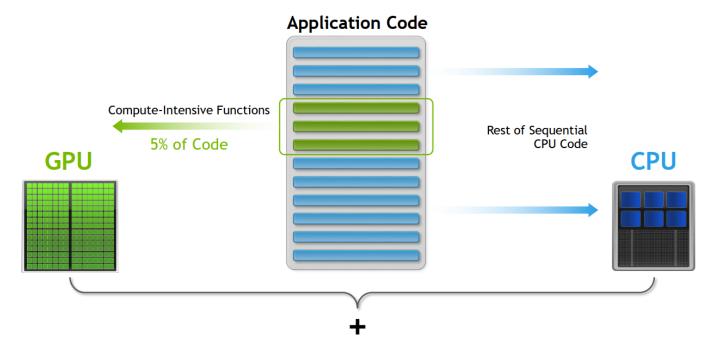
Execution

Heterogeneous Computing

A little bit of background

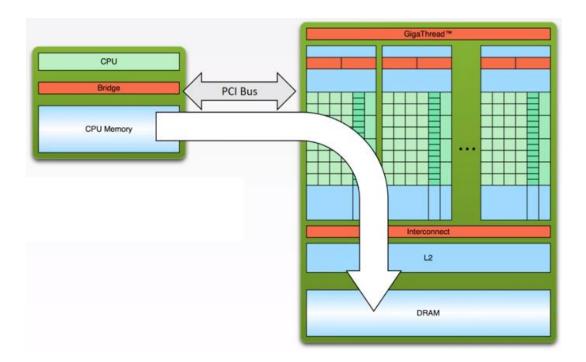
Host:

The computer that has it own CPU and memory ("host memory")

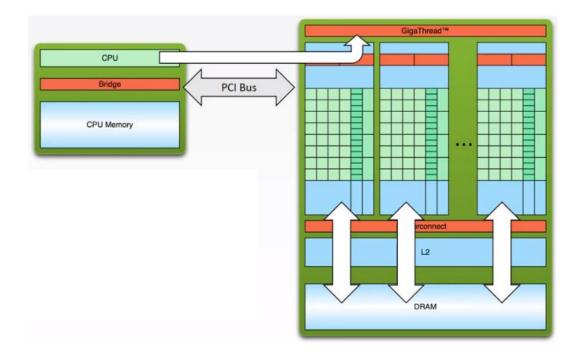

Device:

GPU that has it own memory ("device memory")

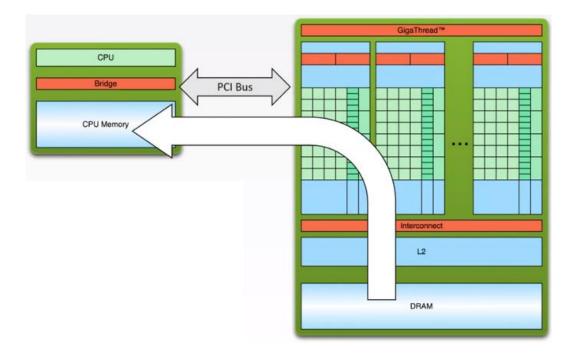
Putting these two together


How GPU acceleration works

How GPU acceleration works


Copy input data from CPU memory to GPU memory

How GPU acceleration works


Load GPU program and execute, caching data on chip for performance

How GPU acceleration works

Copy results from GPU memory to CPU memory

CUDA Toolkits

...and over to Heiko

Programming Approaches

Libraries

"Drop-in" Acceleration

Programming Languages

Maximum Flexibility

Development Environment

CUDA-GDB Debugger

MEMCHECK

Language Support

D&LLEMC