

Filesystems

● Filesystems consist of two parts:
– Metadata – where is my data
– Content – the data itself

File Allocation Table

Data block

Lustre

● Same basic concept
● Built to scale

Metadata server

Object server

Object Table

NFS
● For comparison:

● Metadata and object data in same place
– Reading excessively prevents access

● No ability to spread load
– No ability to server multiple clients efficiently

Reason for ‘No datasets on /home’ recommendation

NFS server

Lustre

● 6xOSS
● 6x6xOST

● 1x MDS (+redundant)
– Major bottleneck for distributed filesystem

Lustre

● 100G in 1x file:
– 1x access MDS
– 1x access OST

● Bottleneck is OST disk read speed (~500MB/s)

● 100G in 1000x files
– 1000x access MDS
– 1000x access OST

● Bottleneck is MDS access rate (~300 iops/s)
– Drastically affects other users!

Small File Workarounds

● Try to avoid using small (<1Mb) files individually

– If you can’t:
● If it’s small (<32G), use shared memory
● If it’s bigger (<350G), use /tmp

Local Storage

Lustre

NFS

/dev/shm
FUSE

/ (boot image)
/tmp (350-500G)

Local Storage
CAVEAT:
If you use local storage

 PLEASE CLEAN IT UP

I can’t know what your job specifically has
written, especially if there’s more jobs of your
own running there
– Thus there’s no automatic way to remove local files
– This INCLUDES /dev/shm!

Local Storage

● /dev/shm means Shared Memory
– Traditionally for transferring data between

processes quickly
– Can be abused for quick filesystem storage
– 50% max ram size (32G/512G max capacity)

– Counts against memory usage for job
– Typical IO ~1Gb/s

Local Storage

● /tmp locally present on compute node
– Small size disk – high RPM + high iops

● Nodes installed onto this disk (~20G)
– Rest available for tmp

● But – you still have to copy data to and from
this location
– If consists of small files – still problems!

● tar + untar is your friend

Large File Workarounds

● One file – one location – one disk
– Bottleneck

Metadata server

Object server

Object Table

Lustre striping

Using lfs setstripe
Set stripe size and
count
Spreads file over
multiple OSTs

MUST BE pool =
normalposts

Large File Workarounds

● No longer bottlenecked on multiple section
reads

Metadata server

Object server

Object Table

Other Filesystems

● /archive on nfs01 – data on ISILON
– WUR only

● FUSE:
– sshfs – mounts to remote fileservers
– archivemount – technical curiosity only

● Performance v. poor

Scontrol

scontrol details

● Priority
– Scheduling priority given to job based on

information in sprio
● JobState=PENDING

Reason=PartitionTimeLimit
– Descriptive reason why job isn’t starting

scontrol details

● SubmitTime/EligibleTime/StartTime/EndTime
– (Start – Eligible) Rough queue length based on

what Slurm expects jobs to take
– Reason why job lengths are important

● NumNodes=1 NumCPUs=2 NumTasks=2
CPUs/Task=1
TRES (Trackable Resources)
– Check for what resources you’ve specified

scontrol update?

● Basically no – you can’t change the
requirements of a job after it’s running
– Except for TimeLimit – you may always reduce this

● But you can reduce the
MinCPUNode/MinMemNode fields whilst job is
pending

sbatch Options

● Unusual options you might not know…

 --dependency

sbatch Dependencies

● after:job_id[:jobid...]
– This job can begin execution after the specified jobs have

begun execution.
● afterany:job_id[:jobid...]

– This job can begin execution after the specified jobs have
ended.

● afternotok:job_id[:jobid...]
– This job can begin execution after the specified jobs have

terminated in some failed state (non-zero exit code, node
failure, timed out, etc).

● afterok:job_id[:jobid...]
– This job can begin execution after the specified jobs have

successfully executed (ran to completion with an exit
code of zero).

sbatch Dependencies

● This allows you to submit multiple jobs in a
chain
– Not all the same size too, e.g.
– small linear job to download/unpack (e.g. on

normalmem)
– Large assembly job (e.g. on fat)
– Small packing job (e.g. on normalmem)

sbatch Dependencies

● expand:job_id
– Resources allocated to this job should be used to

expand the specified job. The job to expand must
share the same QOS (Quality of Service) and
partition. Gang scheduling of resources in the
partition is also not supported.

● singleton
– This job can begin execution after any previously

launched jobs sharing the same job name and user
have terminated.

sbatch Dependencies

● Singleton can be used to limit job rate
– Name all in one ‘pool’ of jobs the same job-name
– Only one will be executed at a time

● Don’t get excited about expand!
– Can only add additional nodes to jobs
– scontrol update jobid NumNodes=ALL

sbatch Options

● Unusual options you might not know…

 --deadline

Deadlines

● You can opt to have a job fail if it will never get
to finish before a certain time

● Can also be a good safety switch for massive
job submission

sbatch Options

● Unusual options you might not know…

 --tmp

Temporary Space

● You’re going to use /tmp for something
● You need X Mb of space

--tmp=X

● Will not execute job on node with less than X
available space

● Reduces heartache from other lazy users

sbatch Options

● Unusual options you might not know…

 --export

Environment Settings

● You are submitting jobs from a script and want
to pass in some environment variable:

sbatch –export=”MYVAR=3”

● You want to explicitly prevent your environment
from tainting this job:

sbatch --export=NONE

sbatch Options

● Unusual options you might not know…

 --open-mode

Append/Truncate

#SBATCH –open-mode=append

● Will append to existing output/error files rather
than overwriting them

● Great for extending jobs / repeating jobs

sbatch Options

● Unusual options you might not know…

 --gres

Generic Resources

● Not so generic
● Mainly used for additional hardware plugins –

Graphical Processing Units (GPUs) and Many
Integrated Cores (MICs, e.g. Knights Landing)

– This is how you (could) specify GPU’s if/when
requested:

 #SBATCH –gres=gpu:1

sbatch Options

● Unusual options you might not know…

 --signal

Signalling

● Slurm will send out signals to processes at a
controlled time period before termination

--signal=INT@120
– Sends out a SIGINT (Interrupt) 120 seconds before

job period expires
● Also can be done from scancel:

scancel –signal USR1
– Useful for sending signals in to get jobs to do things

sbatch Options

● Unusual options you might not know…

 --constraint

Features

● Nodes are not uniform:
– Normal nodes:

● Intel CPUs
● 4000M/CPU

– Fat nodes:
● AMD CPUs
● 16000M/CPU

● May well be others besides in the future

scontrol Features

scontrol show nodes

Features

● Can be combined:

– "opteron&video"
● AND

– "fast|faster"
● OR

– [rack1|rack2|rack3|rack4]
● EVERY part of this job must be in one rack

Reservations

● Some point in the future you need resources
immediately

– e.g. a course
– A seminar
– Time critical computation

● You can submit a job in advance, but you have to
specify the result of that
– How to proceed?

scontrol Reservations

Reservations

● Need to be added by admin
● Can only be assigned to users, not groups

– Can be hacked to follow groups – contingent on
admin awareness

● Can only allocate entire nodes
– Can allocate CPU’s, but no memory – basically

useless
● General policy – max 3 nodes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

