High Performance Computing Cluster Advanced course

Jeremie Vandenplas, Gwen Dawes

16 October 2018

Outline

- Introduction to the Agrogenomics HPC
- Submitting and monitoring jobs on the HPC
- Parallel jobs on the HPC
- Tips and tricks

Introduction to the Agrogenomics HPC

Jeremie Vandenplas, Gwen Dawes

Agrogenomics HPC

- 2 head nodes
- Compute nodes
 - 48 nodes (16 cores; 64GB RAM)
 - 2 fat nodes (64 cores; 1TB RAM)
- →Being upgraded!

Agrogenomics HPC – main storage

Home directory

- /home/[partner]/[username]
- Directory where you are after logon
- Quota of 200GB soft (210GB hard)

Archive

- /archive/[partner]/[username]
- Cheap
- Only for storage and for WUR

Agrogenomics HPC – main storage

Lustre filesystem (faster storage)

- backup
 - /lustre/backup/[partner]/[unit]/[username]
 - Extra cost for backup
- nobackup
 - /lustre/nobackup/[partner]/[unit]/[username]
 - Some costs
- scratch
 - /lustre/scratch/[partner]/[unit]/[username]
 - Free
 - Regularly cleaned up

Agrogenomics HPC – "rules"

Home

- Jobscripts
- Small datasets (performance)
- No computational jobs

Lustre

- Big datasets
- Intensive (computing) jobs
- No job run outside SLURM

Archive

Agrogenomics HPC – useful information

- Linux User Group at WUR
 - https://lug.wur.nl/index.php/Main_Page
- HPC wiki
 - https://wiki.hpcagrogenomics.wur.nl

- Contact person
 - Gwen Dawes
 - Jan van Lith

Questions?

Submitting and monitoring basic jobs on the HPC

J. Vandenplas, G. Dawes

Outline

Running a job on the nodes of the HPC

- Introduction to SLURM
- Characteristics of a job
- Writing and submitting a script
- Monitoring and controlling a job
- Tips and tricks
- Types of jobs
 - Sequential
 - Array
 - Shared memory
 - Distributed memory

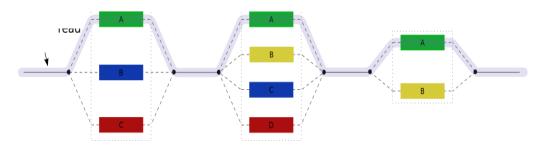
Running a job on the nodes of the HPC?

Job

- An operation or a group of operations treated as a single and distinct unit
- Two parts
 - Resource requests
 - Job steps
 - Tasks that must be done (e.g., software that must be run)
- A job must be submitted to a job scheduler
 Requires a (shell) submission script

Job scheduler/Resource manager

- HPC's job scheduler: SLURM (Simple Linux Utility for Resource Management ; http://slurm.schedmd.com/slurm.html)
- Software which:
 - Manages and allocates resources (compute nodes)
 - Manages and schedules jobs on a set of allocated nodes
 - Sets up the environment for parallel and distributed computing


workload manager

Some definitions

Process

- Instance of a computer program that is being executed
- May be made up of multiple threads that execute instructions concurrently
- Thread
 - Smallest sequence of programmed instructions

Some definitions for Slurm

Task

- In the Slurm context, it must be understood as a process.
- CPU
 - In the Slurm context, it can be understood as a core or a hardware thread.
- Multithreaded program
 - One task using several CPUs
- Multi-process program
 - Several tasks

Running a job on the nodes of the HPC?

Several steps

- 1. Characteristics of the jobs?
- 2. Writing a submission script
- 3. Submitting a job
- 4. Monitoring and controlling a job
- 5. Getting an overview of previous and current jobs

1. Characteristics of the job

What is your job?

- Sequential/parallel
- Resource requests
 - Number of CPUs
 - Amount of RAM
 - Expected computing time
 - ...
- Jobs steps
 - Job steps can be created with the command srun

1. Characteristics of the job

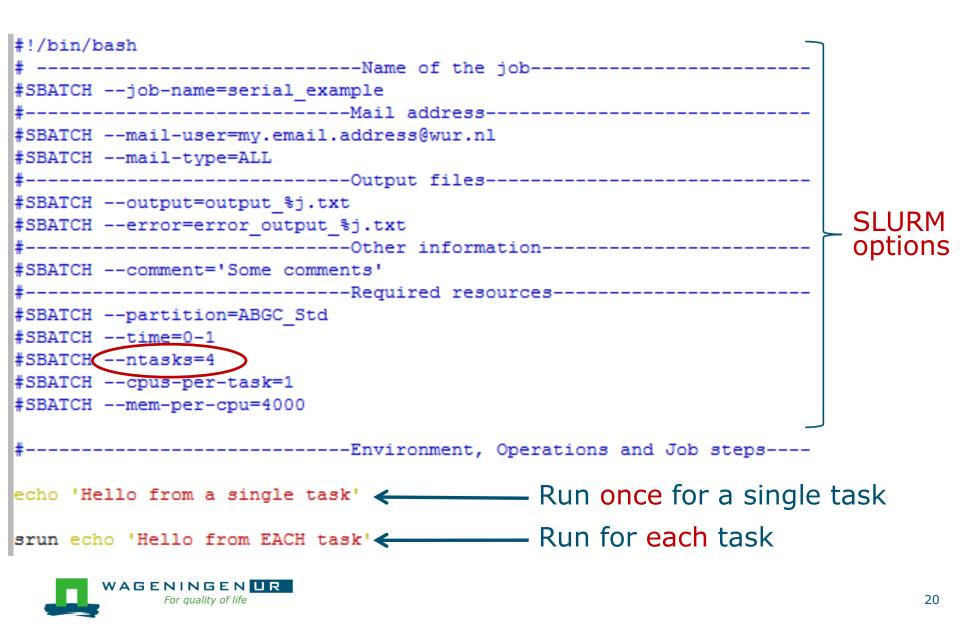
What is your job?

- Sequential/parallel
- If parallel: multi-process vs multi-threaded?

→How can you know it?

- RTFM!
- Read the source code (if available)
- Just run it!

→use *sinteractive*!


1. Characteristics of the job

Try to fit to the real use as much as possible!

Try to ask 4GB RAM per CPU for the compute node (15.6GB RAM per CPU for the large memory nodes)

2. Writing a submission script

The Slurm command *srun*

srun [options] executable [args]

- Run a parallel job on cluster
- Useful options

Option	Report
-c= <ncpus></ncpus>	Request that ncpus allocated per process
-n= <number></number>	Specify the number of tasks to run

The Slurm command srun

[wanda0180nfe01 wanda01810

```
IAGUAGOTOGUITOAT AGUAGOTOIA
        [vande018@nfs01 vande018]$ cat script slurm.sh
        #!/bin/bash
        # -----Name of the job-----
        #SBATCH --job-name=serial example
        #SBATCH --mail-user=my.email.address@wur.nl
        #SBATCH --mail-type=ALL
        #SBATCH --output=output %j.txt
        #SBATCH --error=error output %j.txt
        #SBATCH --comment='Some comments'
        #SBATCH --partition=ABGC Std
        #SBATCH --time=0-1
        #SBATCH --ntasks=4
        #SBATCH -- cpus-per-task=1
        #SBATCH --mem-per-cpu=4000
                     -----Environment, Operations and Job steps----
        echo 'Hello from a single task'
        srun echo 'Hello from EACH task'
        [vande018@nfs01 vande018]$
        [vande018@nfs01 vande018]$ cat output 10969988.txt
        Hello from a single task 🔶 🗕
        Hello from EACH task
        Hello from EACH task
WAGENIN(Hello from EACH task
    For qualiHello from EACH task
        [vande018@nfs01 vande018]$
```

Some SLURM options

You want	SLURM option
To set a job name	job-name="job1"
To get emails	mail-user=name.name@wur.nl mail-type=BEGIN END FAILED ALL
To set the name of the output files	output=output_%j.txt error=error_output_%j.txt
To attach a comment to the job	comment="abcd"

Some SLURM options: resource

You want	SLURM option
To choose a partition	partition=ABGC_Low Std High
To choose a specific feature (e.g., a regular compute node)	constraint=normalmem largemem
12 hours	time=0-12:00:00
3 independent processes	ntasks=3
3 independent processes to spread across 2 nodes	ntasks=3ntasks-per-node=2
3 processes that can use each 2 cores	ntasks=3cpus-per-task=2

4000MB per cpu

--mem-per-cpu=4000

3. Submitting a job

The scripts are submitted using the sbatch command

	jvandenp@localhost:~ 91×42
[vande018@nfs01	shared_memory]\$ ls
ex0_mthread.prm	QMSim16 script_slurm.sh
[vande018@nfs01	shared_memory]\$
[vande018@nfs01	shared_memory]\$ sbatch script_slurm.sh
Submitted batch	job 1120242

- Slurm gives an ID to the job (\$JOBID)
- Options may be passed from the command line
 - E.g., sbatch --ntasks=3 script_slurm.sh
 - Will override value in script
- See Gwen 's tips and tricks

4. Monitoring and controlling a job

Commonly used commands to monitor and control a job

- squeue
- scancel
- sprio
- scontrol

More details in Gwen's presentation

4. Monitoring and controlling a job*squeue*

squeue [options]

- View information about jobs located in the SLURM scheduling queue
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report time limit
start	Report the expected start time of pending jobs
-u <user_id_list></user_id_list>	Report for a list of users

4. Monitoring and controlling a job *squeue*

.				V	ande018@node02	0:~ 92×46		
[vande018@n	[vande018@nfs01 anag]\$ \squeue							
JOBID PAR	ITION	NAME	USER	ST	TIME	NODES NODELIST(REASON)		
1092677 AB	GC Low	asreml R	pelt006	R	22-10:04:41	1 node001		
1120251 AB	GC_Low	calcgrm	vande018	R	45:25	1 node006		
1119982 AB	GC_Low	run PLIN	calus001	R	9:24:43	1 node021		
1119972 AB	GC_Low	run_PLIN	calus001	R	9:51:53	1 node013		
1083998 AB(GC_Std	STELLS	otten030	R	51-16:42:46	1 fat001		
1109401 AB	GC_Std	AG_Prove	derks047	R	21-05:28:18	1 fat001		
1119974 AB	GC_Std	beagle41	bouwm024	R	9:44:30	1 node020		
1119973 AB	GC_Std	beagle41	bouwm024	R	9:48:50	1 node019		
1119957 AB	GC_Std	AG_MS_VC	derks047	R	10:34:59	1 node007		
1119856 AB(GC_Std	F17Run28	tengh001	R	2-23:17:01	1 node001		
1118228 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node005		
1118229 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001		
1118230 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001		
1118231 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node002		
	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node002		
1118233 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node004		

4. Monitoring and controlling a job scancel

scancel [options] [job_id[.step_id]...]

• Cancel jobs or job steps

Monitoring and controlling a job sprio

sprio [options]

- View the components of a job's scheduling priority
- Rule: a job with a lower priority can start before a job with a higher priority IF it does not delay that jobs's start time
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report more information
-u <user_id_list></user_id_list>	Report for a list of users

4. Monitoring and controlling a job scontrol

scontrol [options] [command]

- View Slurm configuration and state
- Update job resource request
- Work only for running jobs
- Useful option
 scontrol show job JOB_ID
 →Lots of information

5. Getting an overview of jobs

Previous and running jobs

- sacct
- Running jobs
 - scontrol
 - sstat
- Previous jobs
 - Contents of emails (--mail-type=END|ALL)

5. Getting an overview of jobs *sacct*

sacct [options]

- Display accounting data for all jobs/steps
- Some information are available only at the end of the job
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of jobs *sacct*

vande018@nfs01	anag]\$ jobid=11202	217				jvandenp@localhost:~
	anag]\$ sacct -j \$ obID	iobidfo Submit		20,Submit,El jible	igible,Start,End. Start	End
	2016-03-29T16	30:12 201 jobidfo	6-03-29T16:3 rmat=JobID%	30:12 2016-03	8-29T16:30:12 2016- 8-29T16:30:12 2016- 9,AveRSS,MaxVMSize,	03-29T16:30:14
1120217 1120217.batch	_555872K	83432K	555872K	83432K		

5. Getting an overview of running jobs *sstat*

sstat [options]

- Display various status information of a running job/step
- Work only if srun is used
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of running jobs **sstat**

		j∨	/andenp@localhost:~ :	92x46		
	<pre></pre>	ŚizeNode agesNode	MaxVMSizeTask MaxPagesTask nsumedEnergy	AveVMSize AvePages		MaxRSSNode MaxR MinCPUNode MinC
1120251.0 904 0 62096348K 0 58:12.000 [vande018@nfs01 a	-	node006 node006 972295 -format=Jo	0 0 0 0 0 0	90449472K 31K RSS.MaxRSS	62096348K 58:12.000 -i 1120251	node006 node006
JobID	AveCPU Av 55.000_62096		1axRSS		,	

5. Getting an overview of jobs *emails*

Displays time, memory and CPU data

	From: root <root@master1.hpcagrogenomics.wur.nl></root@master1.hpcagrogenomics.wur.nl>	
5. Ge	To: Vandenplas, Jeremie	
	CC: Subject: SLURM Job_id=1452680 Name=snpblup Failed, Run time 00:43:24, FAILED, ExitCode 1	
oma	Final State: FAILED	
ema		
	Time data:	
	JobID Submit Eligible End Timelimit Elapsed	
	1452680 2017-06-01T11:05:46 2017-06-01T11:05:46 2017-06-01T15:57:28 1-00:00:00 00:43:24	
	1452680.batch 2017-06-01T15:14:04 2017-06-01T15:14:04 2017-06-01T15:57:28 00:43:24	
	Mamanudata	
Displ	Memory data: JobID RegMem AveVMSize AveRSS MaxVMSize MaxRSS	
	1452680 4000Mc	
	1452680.batch 4000Mc 79868064K 48562480K 79868064K 48562480K	
	CPU data:	
	JobID NCPUS NTasks CPUTime UserCPU SystemCPU TotalCPU AveCPU MinCPU	
	1452680 16 11:34:24 39:07.705 04:10.573 43:18.279	
	1452680.batch 16 1 11:34:24 39:07.705 04:10.573 43:18.279 00:42:53 00:42:53 Accounting Data:	
	Current resource costs:	
	TYPE COST TIME	
	Std 0.049 2017-01-01 00:00:00	
	High 0.099 2017-01-01 00:00:00	
	Low 0.025 2017-01-01 00:00:00	
	home 400.0 2017-01-01 00:00:00	
	scratch 0.0 2014-12-12 15:52:06	
	backup 400.0 2017-01-01 00:00:00	
	nobackup 200.0 2017-01-01 00:00:00	
	USER: vande018	
	Disk costs	
	backup: 0.0 EUR	
	home: 0.0 EUR	
	nobackup: 0.0 EUR	
	scratch: 0.0 EUR	
	TOTAL: 0.0 EUR	
WAG		
	Total number of jobs: 39	
	Compute costs by Partition	

Information on the HPC

/cm/shared/apps/accounting/node_reserve_usage_graph

Activitás	🗵 Terminator マ ven 2 jun, 12:11 痩 25,2 ℃ 读 en マ 昌 - 柳 团 マ
Activites	
	vande018@node006:~ _ ¤ ×
₽	vande018@node006:~ 190x52
[vande0] node:	8@nfs01 training_slurm]\$ /cm/shared/apps/accounting/node_reserved_usage_graph 0%
fat002.	
node001:	222222222222222222222222222222222222222
node002	
nouevoz	
node003	
node004	
node005	
nouevos	
node006:	
	ММММММ
node007:	
node008:	20
node009	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
node010	
noueo 10.	
node011:	
node012	20
node013:	
node014	
node015:	
node016	
node017;	000000000000000000000000000000000000000
neaser.	
node018:	
node019	30
node020:	MMMMMMM CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
node021:	
node022	
nodo022	

node023:

Information on the HPC

- /cm/shared/apps/accounting/node_reserve_usag
 e_graph
- /cm/shared/apps/accounting/get_my_bill
- sinfo
- scontrol show nodes
- https://wiki.hpcagrogenomics.wur.nl/index.php/L og_in_to_B4F_cluster

Gwen 's presentation

- Scontrol
- Sbatch

. . .

Dependencies

Parallel jobs on the HPC

Jeremie Vandenplas, Gwen Dawes

Some jobs and their option requirements

- Serial example
- Embarrassingly parallel example
- Shared memory example
- Message passing example

A serial example

You run one (several) program(s) seriallyThere is no parallelism

A serial example: resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
1 independent process	ntasks=1
4000MB per CPU	mem-per-cpu=4000
You use	(srun) ./myprog

A serial example: script

#!/bin/bash
job
#SBATCHjob-name=multiple datafiles
#Mail address
#SBATCHmail-user=jvandenplas@ulg.ac.be
#SBATCHmail-type=ALL
#Output files
#SBATCHoutput=output_%j.txt
#SBATCHerror=error_output_%j.txt
#antion
#SBATCHcomment='Some comments'
#Required resources
#SBATCHpartition=ABGC_Low
#SBATCHtime=0-1
#SBATCHntasks=1
#SBATCHmem-per-cpu=4000
Operations and Job steps
srun ./QMSim16 ex0.prm
~

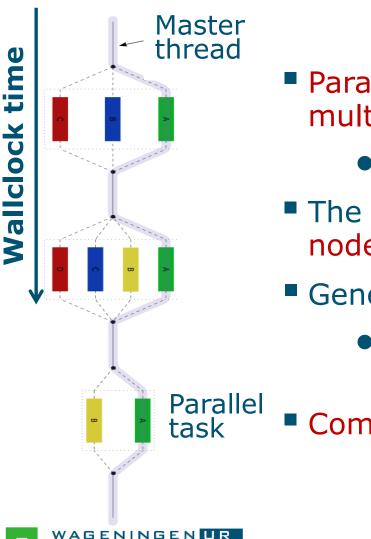
An embarrassingly parallel example

- Parallelism is obtained by launching the same program multiple times simultaneously
- Everybody does the same thing
- No inter-process communication
- Useful cases
 - Multiple input/data files
 - Random sampling
 - •

An embarrassingly parallel example Multiple input/data files

The program processes input/data from one file
 Launch the same program multiple times on distinct input/data files

- It could be submit several times
 - manually
 - with some tricks (loops, srun environment variables,...)
- Or use job arrays!


An embarrassingly parallel example Resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
6 processes to launch 6 completely independent jobs	array=1,3-5,8
3 processes to launch 3 completely independent jobs (2 at a time)	array=1-3%2
1 process per array	ntasks=1
4000MB per CPU	mem-per-cpu=4000
You use	\$SLURM_ARRAY_TASK_ID (srun) ./myprog

```
₽₽
[vande018@nfs01 one parameter file]$ more script slurm.sh
#!/bin/bash
# -----Name of the job-----
#SBATCH --job-name=multiple datafiles
#-----Mail address-----
#SBATCH --mail-user=jernplas@wur.nl
#SBATCH --mail-type=ALL
#-----files-----files-----
#SBATCH --output=output_%j *** Useful: %A_%a
#SBATCH --error=error_output_%j.txt
#-----Other information-----
#SBATCH --comment='Some comments'
#-----Required resources-----
#SBATCH --partition=ABGC Low
#SBATCH --time=0-1
                           _____ 3 array jobs
#SBATCH --array=1-3
                                 (from 1 to 3)
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4000
#-----Environment, Operations and Job steps----
echo "Processing the array $SLURM ARRAY TASK ID"
mkdir simulation $SLURM ARRAY TASK ID && cd simulation $SLURM ARRAY TASK ID
../QMSim16 ../ex0.prm >out.qmsim
                                               SLURM script
```

[vande018@nfs01 one_parameter_file]\$

A shared memory example

- Parallelism is obtained by launching a multithreaded program
 - E.g., using OpenMP or TBB
- The program spawns itself on the node
- Generally run job on a single node
 - The threads cannot be split across several nodes
- Communication by shared memory

A shared memory example: resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
1 process that can use 3 cores for multithreading	ntasks=1cpus-per-task=3
4000MB per CPU	mem-per-cpu=4000
You use	export OMP_NUM_THREADS=3 (export MKL_NUM_THREADS=3) (srun) ./myprog

Run the job on a single node with

• max. 3 threads

For auality of life

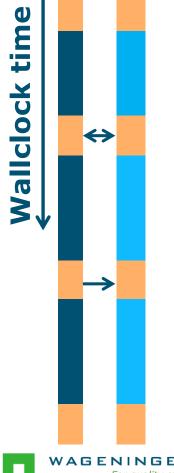
• max. RAM = 3*4000=12000 MB

A shared memory example: script

jvandenp@localhost:~ 91x42
[vande018@nfs01 shared_memory]\$ ls
ex0_mthread.prm QMSim16
[vande018@nfs01 shared_memory]\$ more script_slurm.sh
#!/bin/bash
#
#SBATCHjob-name=multiple_datafiles
#Mail address
#SBATCHmail-user=jeremie.vandenplas@wur.nl
#SBATCHmail-type=ALL #Output files
#SBATCHoutput=output %j.txt
#SBATCHerror=error_output_%j.txt
#Other information
#SBATCHcomment='Some comments'
#partition=ABGC_Low
#SBATCHtime=1-0:0:0
#SBATCHntasks=1
#SBATCHcpus-per-task=3
#SBATCHmem-per-cpu=4000
OMP NUM THREADS-3
export OMP_NUM_THREADS=3 ./QMSim16 ex0 mthread.prm
SLURM script

Pitfalls

Using --ntasks=n for shared memory programs
 Could work or not!


→Use --ntasks=1 --cpus-per-task=*n*

Forgetting to mention the number of threads to the shared memory program (e.g., OpenMP programs)

→Add export OMP_NUM_THREADS=1 to your ~/.bashrc

A message passing example

- Parallelism is obtained by launching a multiprocess program
 - E.g., MPI, PGAS (Coarray Fortran, UPC)
- One program spawns itself on several nodes
- Inter-process communication by the network

A message passing example: resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8hours	time=00-08:00:00
3 processes for use with MPI that can use 1 core for multithreading	ntasks=3cpus-per-task=1
4000MB per CPU	mem-per-cpu=4000
You use	Module load mpi_library mpirun myprog

Run the job on max. 3 nodes with max. RAM = 3*4000=12000 MB

A message passing example: script

```
H.
                       jvandenp@localhost:~ 78x27
[vande018@nfs01 message passing]$ ls
hello.c hello.mpi script slurm.sh
[vande018@nfs01 message passing]$ more script slurm.sh
#!/bin/bash
# -----Name of the job-----
#SBATCH --job-name=multiple datafiles
#------#ail address-----
#SBATCH --mail-user=jeremie.vandenplas@wur.nl
#SBATCH --mail-type=ALL
#-----Output files-----
#SBATCH --output=output %j.txt
#SBATCH --error=error output %j.txt
#SBATCH --comment='Some comments'
#-----Required resources-----
#SBATCH --partition=ABGC Low
#SBATCH --time=1-0:0:0
#SBATCH --ntasks=4
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4000
#-----Bnvironment, Operations and Job steps----
module load openmpi/gcc/64/1.10.1
#mpicc hello.c -o hello.mpi
mpirun hello.mpi
```


Pitfalls

Using --ntasks=n for shared memory programs

• Could work or not!

→Use --ntasks=1 --cpus-per-task=*n*

Forgetting to mention the number of threads to the shared memory program

→Add export OMP_NUM_THREADS=1 to your ~/.bashrc

■ Shared memory program OR message passing program?
→RTFM!

→ Check the output of *top* with a small example!

A mixed example

A parallel job can included different parallelization paradigms!

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
4 processes that can use 3 cores for multithreading	ntasks=4cpus-per-task=3
4000MB per CPU	mem-per-cpu=4000
You use	Module load mpi_library export OMP_NUM_THREADS=3 (export MKL_NUM_THREADS=3) mpirun myprog

Summary: resource requests

- Choose the number of processes (--ntasks)
- Choose the number of threads per process (--cpu-pertask)
- Set environment variables (OMP_NUM_THREADS, MKL_NUM_THREADS,...)
- Use SLURM environment variables if required
- Launch processes with srun or mpirun if required

Thank you!

Questions?

