High Performance Computing Cluster Basic course

Jeremie Vandenplas, Gwen Dawes

8 May 2019

Outline

- Introduction to the HPC Anunna
- Some "advanced" tools in Unix/Linux
- Submitting and monitoring basic jobs on Anunna

Introduction to the HPC Anunna

Jeremie Vandenplas, Gwen Dawes

Outline

- Some definitions
- Description of the HPC Anunna

High performance computing cluster

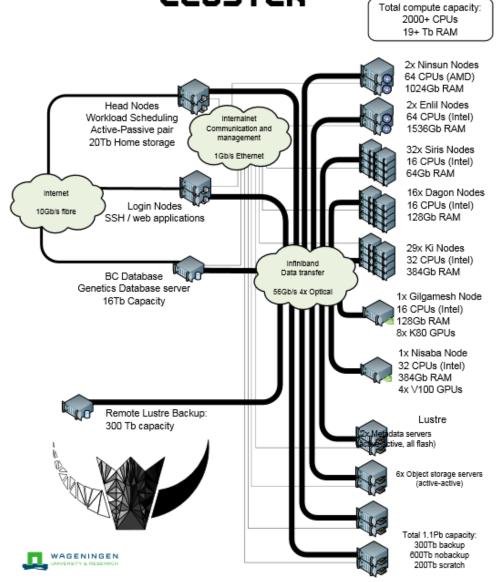
• Group of interconnected computers (node) that work together and act like a single system

5

High performance computing cluster

- Group of interconnected computers (node) that work together and act like a single system
- CPU (Central processing unit)
 - Component within a computer that carries out the instructions of a computer program

High performance computing cluster


- Group of interconnected computers (node) that work together and act like a single system
- CPU (Central processing unit)
 - Component within a computer that carries out the instructions of a computer program
- Core
 - Processing unit which reads and executes program instructions

ANUNNA

WAGEN

UNIVERSITY &

HPC Anunna

- 48 Computes nodes
 - 16 cores (Intel), 64 GB or 128 GB RAM
- 29 Computes nodes
 - 32 cores (Intel), 328 GB RAM
- 2 Fat nodes
 - 64 cores (AMD), 1 TB RAM
- 2 Fat nodes
 - 64 cores (Intel), 1.5 TB RAM
- 4x GPU nodes
 - NVIDIA Tesla V10
- 1000 TB Lustre parallel file system (15 GB/s)

HPC Anunna – main storage

Home directory

- /home/[partner]/[username]
- Directory where you are after logon
- Quota of 200GB soft (210GB hard)

Archive

- /archive/[partner]/[username]
- Cheap
- Only for storage and for WUR

HPC Anunna – main storage

Lustre filesystem (faster storage)

- backup
 - /lustre/backup/[partner]/[unit]/[username]
 - Extra cost for backup
- nobackup
 - /lustre/nobackup/[partner]/[unit]/[username]
 - Some costs
- scratch
 - /lustre/scratch/[partner]/[unit]/[username]
 - Free
 - Regularly cleaned up

HPC Anunna – "rules"

Home

- Jobscripts
- Small datasets (performance)
- Not computational jobs

Lustre

- Big datasets
- Intensive (computing) jobs
- No job run outside SLURM

Archive

HPC Anunna – useful information

- HPC Anunna wiki
 - https://wiki.anunna.wur.nl/index.php/Main_Page
- Linux User Group at WUR
 - https://lug.wur.nl/index.php/Main_Page
- Support
 - <u>hpc.support@wur.nl</u>

Questions?

Some "advanced" tools in Unix/Linux

Jeremie Vandenplas, Gwen Dawes

(De)compressing files

- To compress a file:
 gzip file1
- To decompress a file:
 gunzip file1.gz
 gzip –d file2.gz
- Other commands
 bzip2, xz, zip,...

Transferring files using *scp*

To copy a file *from* an external machine:
 scp username@hostname:~/file1 destination_name

To copy a file to an external machine:
 scp ~/file1 username@hostname:destination_name

Downloading files from the web

To download a file from the web:
 wget [options] [url]

Making a file executable

To make a file executable chmod u+x file1

To execute a program/script/....
./program [options]
/path/to/the/program/program [options]

Environment variables

- ~data storage for Unix/Linux shell
- To assign an environment variable

MYVARIABLE=my_value

- To access the data stored within an environment variable:
- echo **\$MYVARIABLE**
- To list all environment variables:

env

Remove the existence of an environment variable:

unset MYVARIABLE

Environment modules

- Provides many software not installed by default
- module avail
- module list
- module load name
- module rm

A bash (Shell) script

- Plain text file which contains a serie/mixture of commands.
- Tip
 - Anything you can run normally on the command line can be put into a script and it will do exactly the same thing.
- Convention: extension of .sh (e.g., script.sh).
- Example

```
Infs01.hpcagrogenomics.wur.nl - PuTTY

Infs01.hpcagrogenomics.wur.nl - PuTTY

Infs01.hpcagrogenomics.wur.nl - PuTTY

Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - PuTTY
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.wur.nl - Putty
Infs01.hpcagrogenomics.
```

Try it...

- 1. Create a directory (e.g., 'example_1') in your Lustre scratch directory
- Download QMSim from this URL and decompress (*unzip*) it:

https://git.wur.nl/dawes001/publicfiles/raw/master/QMSim-Linux.zip

3. Copy the parameter file /lustre/shared/training_slurm/spring_2019/serial/training/ex _serial_qmsim.prm in your directory!

Extra: write a bash script to do all these steps!

Questions?

Solution

```
!/bin/bash
1
 1
 2 #Environment variable
 3 namedir='example 1'
  4
  5 #delete the directory if it exists
  6 if [ -d $namedir ]; then rm -r $namedir; fi
  7
 8 #Create the directory
 9 mkdir $namedir
10
11 #go in the created directory
12 cd Snamedir
13
14 #dowload the archive QMSim
15
   wget https://git.wur.nl/dawes001/public-files/raw/master/QMSim-Linux.zip
16
17 #decompress the archive
18 unzip QMSim-Linux.zip
19
20 #copy the parameter file
21
    cp /lustre/shared/training slurm/ spring_2019 /serial/training/ex serial qmsim.prm .
22
23 #list the content of the directory
24
    13
```


Extra - Symbolic link

To create a symbolic link to a file/directory, instead of copying it:

In -s /path/to/file1 link

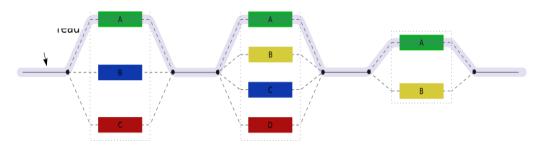
Submitting and monitoring basic jobs on Anunna

J. Vandenplas, G. Dawes

Outline

- Some definitions
- Running a basic job on the nodes of Anunna
 - Introduction to SLURM
 - Characteristics of a job
 - Writing and submitting a script
 - Monitoring and controlling a job
- Some exercises
- (Extra: Submitting a job array)

Process


Instance of a computer program that is being executed

top - 13:16:08 up 11 days, 18:06, 43 users, load average: 7.13, 5.27, 4.28 Tasks: 860 total, 6 running, 852 sleeping, 2 stopped, 0 zombie Cpu(s): 89.1%us, 2.8%sy, 0.0%ni, 8.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 66059268k total, 62016800k used, 4042468k free, 88444k buffers Swap: 63999992k total, 19730664k used, 44269328k free, 8198812k cached

							-			
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU %	ы́МЕМ	TIME+ COMMAND
37014	vande018	20	0	14.2g	10g	2368	R	299.3	16.3	8:13.83 calc_grm
37291	vande018	20	0	22036	2036	1036	R	0.7	0.0	0:03.61 top
936	vande018	20	0	130m	828	668	S	0.0	0.0	0:00.23 sshd
938	vande018	20	0	112m	1968	1288	S	0.0	0.0	0:00.20 bash
6515	vande018	20	0	127m	312	308	S	0.0	0.0	0:03.24 screen
6516	vande018	20	0	112m	384	380	S	0.0	0.0	0:00.43 bash
6520	vande018	20	0	112m	448	444	S	0.0	0.0	0:00.83 bash
13249	vande018	20	0	130m	984	808	S	0.0	0.0	0:00.43 sshd
13283	vande018	20	0	112m	2352	1508	S	0.0	0.0	0:00.39 bash
14627	vande018	20	0	112m	1216	1212	S	0.0	0.0	0:00.46 bash
14689	vande018	20	0	127m	456	452	S	0.0	0.0	0:04.53 screen
14690	vande018	20	0	112m	928	924	S	0.0	0.0	0:00.24 bash
14694	vande018	20	Θ	112m	928	924	S	0.0	0.0	0:00.17 bash

Process

- Instance of a computer program that is being executed
- May be made up of multiple threads that execute instructions concurrently
- Thread
 - Smallest sequence of programmed instructions

Process / Thread

• Linux command: *top*

jvandenp@localhost:~ 92x46										
top - 13:16:08 up 11 days, 18:06, 43 users, load average: 7.13, 5.27, 4.28										
Tasks: 860 total, 6 running, 852 sleeping, 2 stopped, 0 zombie										
Cpu(s): 89.1%us, 2.8%sy, 0.0%ni, 8.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st										
Mem: 66059268k total, 62016800k used, 4042468k free, 88444k buffers										
Swap: 63999992k total, 19730664k used, 44269328k free, 8198812k cached										

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+ COMMAND
37014	vande018	20	0	14.2g	10g	2368	R	299.3	16.3	8:13.83 calc_grm
37291	vande018	20	0	22036	2036	1036	R	0.	0.0	0:03.61 top
936	vande018	20	0	130m	828	668	S	0.0	0.0	0:00.23 sshd
938	vande018	20	0	112m	1968	1288	S	0.0	0.0	0:00.20 bash
6515	vande018	20	0	127m	312	308	S	0.0	0.0	0:03.24 screen
6516	vande018	20	0	112m	384	380	S	0.0	0.0	0:00.43 bash
6520	vande018	20	0	112m	448	444	S	0.0	0.0	0:00.83 bash
13249	vande018	20	0	130m	984	808	S	0.0	0.0	0:00.43 sshd
13283	vande018	20	0	112m	2352	1508	S	0.0	0.0	0:00.39 bash
14627	vande018	20	0	112m	1216	1212	S	0.0	0.0	0:00.46 bash
14689	vande018	20	0	127m	456	452	S	0.0	0.0	0:04.53 screen
14690	vande018	20	0	112m	928	924	S	0.0	0.0	0:00.24 bash
14694	vande018	20	0	112m	928	924	S	0.0	0.0	0:00.17 bash

Running a job on the nodes of Anunna?

Running a job on the nodes of Anunna?

Job

- An operation or a group of operations treated as a single and distinct unit
- Two parts
 - Resource requests
 - Job steps
 - Tasks that must be done (e.g., software that must be run)

Running a job on the nodes of Anunna?

Job

- An operation or a group of operations treated as a single and distinct unit
- Two parts
 - Resource requests
 - Job steps
 - Tasks that must be done (e.g., software that must be run)
- A job must be submitted to a job scheduler
 Requires a (shell) submission script

Job scheduler/Resource manager

Software which:

- Manages and allocates resources (compute nodes)
- Manages and schedules jobs on a set of allocated nodes
- Sets up the environment for parallel and distributed computing

Job scheduler/Resource manager

Software which:

- Manages and allocates resources (compute nodes)
- Manages and schedules jobs on a set of allocated nodes
- Sets up the environment for parallel and distributed computing
- HPC's job scheduler: SLURM (Simple Linux Utility for Resource Management ; http://slurm.schedmd.com/slurm.html)

Some definitions for Slurm

Task

• In the Slurm context, it must be understood as a process.

Some definitions for Slurm

Task

- In the Slurm context, it must be understood as a process.
- CPU
 - In the Slurm context, it can be understood as a core or a hardware thread.

Some definitions for Slurm

Task

- In the Slurm context, it must be understood as a process.
- CPU
 - In the Slurm context, it can be understood as a core or a hardware thread.
- Multithreaded program
 - One task using several CPUs
- Multi-process program
 - Several tasks

Running a basic job on the HPC nodes?

A submission script is required...

```
#!/bin/bash
            -----Name of the job-----
           #SBATCH --job-name=example1
           #------Mail address-----
           #SBATCH --mail-user=jvandenplas@ulg.ac.be
           #SBATCH --mail-type=ALL
           #-----Output files-----
           #SBATCH --output=output %j.txt
           #SBATCH --error=error output %j.txt
           #-----Other information------
           #SBATCH --comment='Some comments'
Not on
Anunna!
                               ----Required resources-----
           #SBATCH --partition=ABGC Low
           #SBATCH --time=0-1
           #SBATCH --ntasks=1
           #SBATCH --cpus-per-task=1
           #SBATCH --mem-per-cpu=4000
           #-----Bnvironment, Operations and Job steps----
           export OMP NUM THREADS=1
           echo 'Start calc grm'
           srun calc grm --par param.par --pca >out.calc grm
```

→... and it must be submitted!

Running a job?

Several steps

- 1. Characteristics of the jobs?
- 2. Writing a submission script
- 3. Submitting a job
- 4. Monitoring and controlling a job
- 5. Getting an overview of previous and current jobs

What is your job?

- Sequential/parallel
- Resource requests
 - Number of CPUs
 - Amount of RAM
 - Expected computing time
 - ...
- Jobs steps
 - Job steps can be created with the command srun

Try to fit to the real use as much as possible!

- Try to ask
 - 4 GB RAM per CPU for nodes with 64 GB
 - 8 GB RAM per CPU for nodes with 128 GB
 - 10.2 GB RAM per CPU for nodes with 328 GB
 - 15.6 GB RAM per CPU for nodes with 1 TB
 - 23.4 GB RAM per CPU for nodes with 1.5 TB

What is your job?

- Sequential/parallel
- If parallel: multi-process vs multi-threaded?

→How can you tell?

- RTFM!
- Read the source code (if available)
- Just run it!

→use *sinteractive*!

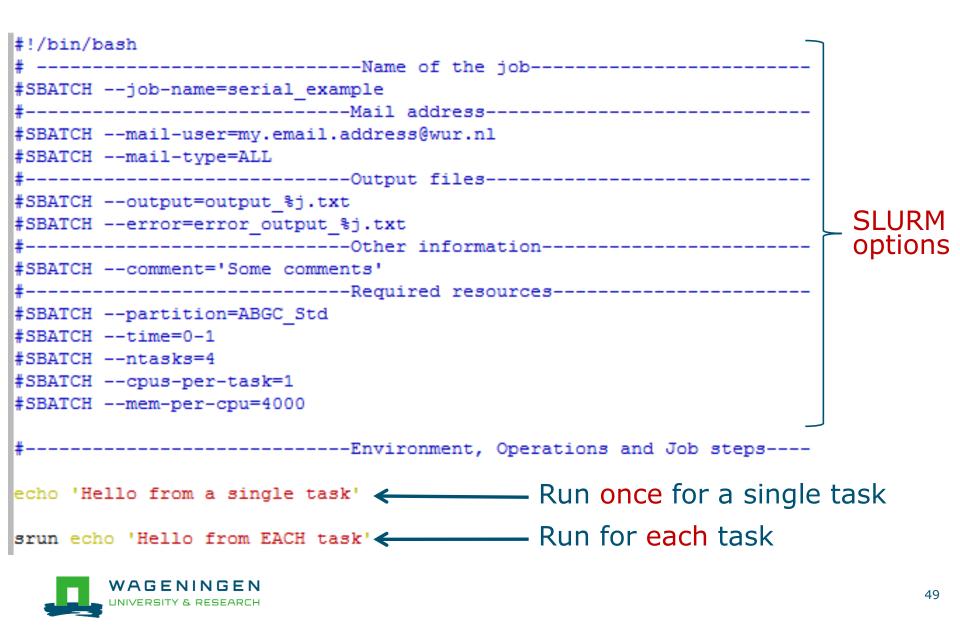
- Run the job using Sandbox environment interactive jobs
 - sinteractive
 - Wrapper on *srun*
 - Request immediate interactive shell on node(s)

sinteractive -p GUESTS_LOW -c <cpus> --mem <MB>


```
😕 🗐 🔲 dawes001@nfs01
File Edit View Search Terminal Help
-bash-4.2$ hostname
nfs01
-bash-4.2$ sinteractive -p GUEST_Low -c 1 --mem 2000
srun: job 1374164 queued and waiting for resources
srun: job 1374164 has been allocated resources
bash-4.2$ hostname
node001
bash-4.2$
                                        Shell now on node with
                                        resources contained
                                        →just like a real script!
```

Try it...

- 1. Create a directory (e.g., 'example_1') in your Lustre scratch directory
- 2. Download QMSim from this URL and decompress it: <u>https://git.wur.nl/dawes001/public-</u> <u>files/raw/master/QMSim-Linux.zip</u>
- 3. Copy the parameter file /lustre/shared/training_slurm/spring_2018/serial/training/ex _serial_qmsim.prm in your directory!
- Try to find the requirements (e.g., memory) of QMSim16 using sinteractive


(The parameter file must be mentioned in the command line)

Questions?

2. Writing a submission script

The Slurm command *srun*

srun [options] executable [args]

- Run a parallel job on cluster
- Useful options

Option	Report
-c= <ncpus></ncpus>	Request that ncpus allocated per process
-n= <number></number>	Specify the number of tasks to run

The Slurm command srun

[wanda0180nfe01 wanda01810

```
IAGUAGOTOGUITAAT AGUAGATOIA
       [vande018@nfs01 vande018]$ cat script slurm.sh
       #!/bin/bash
       # -----Name of the job-----
       #SBATCH --job-name=serial example
       #-----Bail address------
       #SBATCH --mail-user=my.email.address@wur.nl
       #SBATCH --mail-type=ALL
       #SBATCH --output=output %j.txt
       #SBATCH --error=error_output_%j.txt
       #SBATCH --comment='Some comments'
       #SBATCH --partition=ABGC Std
       #SBATCH --time=0-1
       #SBATCH --ntasks=4
       #SBATCH -- cpus-per-task=1
       #SBATCH --mem-per-cpu=4000
                     -----Environment, Operations and Job steps----
       echo 'Hello from a single task'
       srun echo 'Hello from EACH task'
       [vande018@nfs01 vande018]$
       [vande018@nfs01 vande018]$ cat output 10969988.txt
       Hello from a single task 🔶 🗕
       Hello from EACH task
       Hello from EACH task
WAGENIN Hello from EACH task
INIVERSITY & RE
       [vande018@nfs01 vande018]$
```

Some SLURM options

You want	SLURM option
To set a job name	job-name="job1"
To get emails	mail-user=name.name@wur.nl mail-type=BEGIN END FAILED ALL
To set the name of the output files	output=output_%j.txt error=error_output_%j.txt
To attach a comment to the job	comment="abcd"

Some SLURM options: resource

You want	SLURM option
To choose a partition	partition=ABGC_Low Std High
To choose a specific feature (e.g., a regular compute node)	constraint=normalmem largemem
3 independent processes	ntasks=3
3 independent processes to spread across 2 nodes	ntasks=3ntasks-per-node=2
3 processes that can use each 2 cores	ntasks=3cpus-per-task=2
spread across 2 nodes 3 processes that can use each 2	

4000MB per cpu

--mem-per-cpu=4000

Some SLURM options: partitions

xxxx_Low

- Limited time (8h)
- Very cheap
- xxxx_Std
 - No limit
- xxxx_High
 - No limit + extra costs

**** = ABGC/ESG/GUEST/EDUCATION/...

Some SLURM options: features

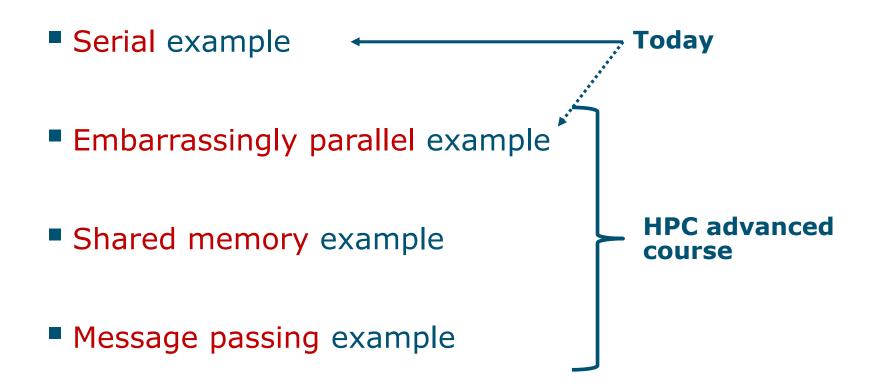
- 128g/384g/1019g/1536g/normalmem/largemem/morem em
 - Nodes with specific RAM
- 16cpus/32cpus/64cpus
 - Nodes with a specific total number of CPUs
- 4gpercpu/8gpercpu/16gpercpu/24gpercpu
- nvidia/K80/V100
 - Nodes with GPUs
- Amd/avx512/intel
 - Nodes with specific processors
- dagon/enlil/gilgamesh/ki/ninsun/siris/gen2

3. Submitting a job

The scripts are submitted using the sbatch command

jvandenp@localhost:~ 91x42
[vande018@nfs01 shared_memory]\$ ls
ex0_mthread.prm QMSim16 script_slurm.sh
[vande018@nfs01 shared_memory]\$
[vande018@nfs01 shared_memory]\$ sbatch script_slurm.sh
Submitted batch job 1120242

- Slurm gives an ID to the job (\$JOBID)
- Options may be passed from the command line
 - E.g., sbatch --ntasks=3 script_slurm.sh
 - Will override value in script



Some jobs and their option requirements

- Serial example
- Embarrassingly parallel example
- Shared memory example
- Message passing example

Some jobs and their option requirements

A serial example

You run one (several) program(s) seriallyThere is no parallelism

A serial example: resource

You want	SLURM options		
To chose a partition	partition=ABGC_Std		
8 hours	time=00-08:00:00		
1 independent process	ntasks=1		
4000MB per CPU	mem-per-cpu=4000		
You use	(srun) ./myprog		

A serial example: script

```
#!/bin/bash
# -----Name of the job-----
#SBATCH --job-name=serial example
#-----Mail address-----
#SBATCH --mail-user=my.email.address@wur.nl
#SBATCH --mail-type=ALL
#SBATCH --output=output %j.txt
#SBATCH --error=error output %j.txt
 #SBATCH --comment='Some comments'
#SBATCH --partition=ABGC Std
#SBATCH --time=0-1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4000
     -----Environment, Operations and Job steps----
srun echo 'Hello'
  JNIVERSITY & RESEARCH
```

4. Monitoring and controlling a job scancel

scancel [options] [job_id[.step_id]...]

• Cancel jobs or job steps

Write a Slurm script to run QMSim16 with the required memory and submit it!

Helpful tool

/cm/shared/apps/accounting/sbatch-generator

Activités 🔄 Terminator 🗸	mer 7 jun, 09:59 🛛 🚔 14 °C	读: en 🕶 📲 🌒 🖌 🖛
	vande018@node040:~	_ = ×
	vande018@node040;~ 190x52	
	Type of SLURM job [*] Single/Multiprocess [] 2 Multithreaded/OpenMP [] [] 3 MPI	
	<pre></pre>	

4. Monitoring and controlling a job

Commonly used commands to monitor and control a job

- squeue
- scontrol
- scancel
- sprio

4. Monitoring and controlling a job*squeue*

squeue [options]

- View information about jobs located in the SLURM scheduling queue
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report time limit
start	Report the expected start time of pending jobs
-u <user_id_list></user_id_list>	Report for a list of users

4. Monitoring and controlling a job *squeue*

H.	vande018@node020:~ 92x46					
[vande018@nfs01 anag]\$ \squeue						
JOBID P	ARTITION	NAME	USER	ST	TIME	NODES NODELIST(REASON)
1092677	ABGC_Low	asreml_R	pelt006	R	22-10:04:41	1 node001
1120251	ABGC_Low	calcgrm	vande018	R	45:25	1 node006
1119982	ABGC_Low	run_PLIN	calus001	R	9:24:43	1 node021
	_	run_PLIN		R	9:51:53	1 node013
1083998	ABGC_Std	STELLS	otten030	R	51-16:42:46	1 fat001
1109401	ABGC_Std	AG_Prove	derks047	R	21-05:28:18	1 fat001
1119974	ABGC_Std	beagle41	bouwm024	R	9:44:30	1 node020
1119973	ABGC_Std	beagle41	bouwm024	R	9:48:50	1 node019
1119957	ABGC_Std	AG_MS_VC	derks047	R	10:34:59	1 node007
1119856	ABGC_Std	F17Run28	tengh001	R	2-23:17:01	1 node001
1118228	ABGC_Std	run_m8.s	calus001	R	5-22:50:59	1 node005
1118229	ABGC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001
1118230	ABGC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001
1118231	ABGC_Std	run_m8.s	calus001	R	5-22:50:59	1 node002
	_	run_m8.s		R	5-22:50:59	1 node002
1118233	ABGC_Std	run_m8.s	calus001	R	5-22:50:59	1 node004

4. Monitoring and controlling a job *scontrol*

scontrol [options] [command]

- View Slurm configuration and state
- Update job resource request
- Work only for running jobs
- Useful options

scontrol show job JOB_ID scontrol show nodes

→Lots of information

4. Monitoring and controlling a job **scontrol**

jvandenp@localhost:~ 91x42 [vande018@nfs01 anag]\$ scontrol show jobid 1120249 JobId=1120249 Name=calcarm UserId=vande018(17240402) GroupId=domain users(16777729) Priority=1 Account=4414801570 QOS=normal JobState=RUNNING Reason=None Dependency=(null) Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0 RunTime=00:01:29 TimeLimit=2-00:00:00 TimeMin=N/A SubmitTime=2016-03-29T18:48:38 EligibleTime=2016-03-29T18:48:38 StartTime=2016-03-29T18:48:38 EndTime=2016-03-31T18:48:38 PreemptTime=None SuspendTime=None SecsPreSuspend=0 Partition=ABGC Low AllocNode:Sid=nfs01:10205 RegNodeList=(null) ExcNodeList=(null) NodeList=node006 BatchHost=node006 NumNodes=1 NumCPUs=16 CPUs/Task=16 RegS:C:T=*:*:* MinCPUsNode=16 MinMemoryCPU=4000M MinTmpDiskNode=0 Features=(null) Gres=(null) Reservation=(null) Shared=OK Contiguous=0 Licenses=(null) Network=(null) Command=/lustre/scratch/WUR/ABGC/vande018/apy1/popsbi/anag/lance.sh WorkDir=/lustre/scratch/WUR/ABGC/vande018/apv1/popsbi/anag

4. Monitoring and controlling a job scancel

scancel [options] [job_id[.step_id]...]

• Cancel jobs or job steps

Monitoring and controlling a job sprio

sprio [options]

- View the components of a job's scheduling priority
- Rule: a job with a lower priority can start before a job with a higher priority IF it does not delay that jobs's start time
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report more information
-u <user_id_list></user_id_list>	Report for a list of users

5. Getting an overview of jobs

Previous and running jobs

- sacct
- Running jobs
 - scontrol
 - sstat
- Previous jobs
 - Contents of emails (--mail-type=END|ALL)

5. Getting an overview of jobs *sacct*

sacct [options]

- Display accounting data for all jobs/steps
- Some information are available only at the end of the job
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of jobs *sacct*

vande0180nfs01	anag]\$ jobid=1120	217				jvandenp@localhost:~
[vande018@nfs01	anag]\$ sacct -j	\$jobidfo			Eligible,Start,End	
	JobID	Submit	Eli	gible	Start	End
	2016-03-29T1	5:30:12 201 \$jobidfo	6-03-29T16:3 rmat=JobID%	30:12 2016-0	03-29T16:30:12 2016 03-29T16:30:12 2016 2e,AveRSS,MaxVMSize	-03-29T16:30:14
1120217 1120217.batch	_555872K	83432K	555872K	83432K		

5. Getting an overview of running jobs *sstat*

sstat [options]

- Display various status information of a running job/step
- Work only if srun if used
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of running jobs sstat

-		j	vandenp@localhost:~	92x46			
	xVMŠize MaxVM MaxPages MaxP	SizeNode agesNode	MaxVMSizeTask MaxPagesTask nsumedEnergy	AveVMSize AvePages		MaxRSSNode M MinCPUNode M	
0 62096348K 0 58:12.000	1	node006 node006 972295		90449472K 31K	62096348K 58:12.000	node006 node006	
[vande018@nfs01 JobID 1120251.0 58 [vande018@nfs01	AveCPU Av :55.000_ 62096	eRSS N	MaxRSS 96348K	n35, Maxn35	-) 1120231		

5. Getting an overview of jobs *emails*

Displays time, memory and CPU data

	From: root <root@master1.hpcagrogenomics.wur.nl></root@master1.hpcagrogenomics.wur.nl>						
5. Ge	To: Vandenplas, Jeremie						
	Subject: SLURM Job_id=1452680 Name=snpblup Failed, Run time 00:43:24, FAILED, ExitCode 1						
	Final State: FAILED						
ema							
	Time data:						
	JobID Submit Eligible End Timelimit Elapsed						
	1452680 2017-06-01T11:05:46 2017-06-01T11:05:46 2017-06-01T15:57:28 1-00:00:00 00:43:24						
	1452680.batch 2017-06-01T15:14:04 2017-06-01T15:14:04 2017-06-01T15:57:28 00:43:24						
Displ	Memory data:						
Pispi	JobID RegMem AveVMSize AveRSS MaxVMSize MaxRSS						
	1452680 4000Mc						
	1452680.batch 4000Mc 79868064K 48562480K 79868064K 48562480K						
	CPU data:						
	JobID NCPUS NTasks CPUTime UserCPU SystemCPU TotalCPU AveCPU MinCPU						
	1452680 16 11:34:24 39:07.705 04:10.573 43:18.279						
	1452680.batch 16 1 11:34:24 39:07.705 04:10.573 43:18.279 00:42:53 00:42:53						
	Accounting Data:						
	Current resource costs:						
	TYPE COST TIME						
	Std 0.049 2017-01-01 00:00:00						
	High 0.099 2017-01-01 00:00:00						
	Low 0.025 2017-01-01 00:00:00						
	home 400.0 2017-01-01 00:00:00						
	scratch 0.0 2014-12-12 15:52:06						
	backup 400.0 2017-01-01 00:00:00						
	nobackup 200.0 2017-01-01 00:00:00						
	LISEP: vondo019						
	USER: vande018						
	Disk costs						
	backup: 0.0 EUR						
	home: 0.0 EUR						
	nobackup: 0.0 EUR						
	scratch: 0.0 EUR TOTAL: 0.0 EUR						
WAC							
	Total number of jobs: 39						
	Compute costs by Partition						

Information on the HPC

/cm/shared/apps/accounting/node_reserve_usage_graph

Activitás	🗵 Terminator マ ven 2 jun, 12:11 痩 25,2 ℃ 读 en マ 🛔 🌒 🗿 マ
Activities	
	vande018@node006:~ _ ¤ ×
₽	vande018@node006:~ 190x52
[vande0] node:	8@nfs01 training_slurm]\$ /cm/shared/apps/accounting/node_reserved_usage_graph 0%
fat002.	
node001:	20
node002.	
node004:	ССССССССССССССССССССССССССССССССССССС
node005.	
noueves.	
node006:	
	ММММММ
node007:	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
node008:	20
node009:	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
node010:	
noueoro.	
node011:	
node012:	20
node013:	
node014:	2222222
node015:	
node016:	
node017:	000000000000000000000000000000000000000
neacer.	
node018:	
node019:	30
node020:	MMMMMMM CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
node021:	
node022:	
nodo022	

node023:

Information on the HPC Anunna

- /cm/shared/apps/accounting/node_reserve_usag
 e_graph
- /cm/shared/apps/accounting/get_my_bill
- sinfo
- scontrol show nodes

Extra information – job array

An embarrassingly parallel example

- Parallelism is obtained by launching the same program multiple times simultaneously
- Everybody does the same thing
- No inter-process communication
- Useful cases
 - Multiple input/data files
 - Random sampling
 - •

An embarrassingly parallel example Multiple input/data files

The program processes input/data from one file
 Launch the same program multiple times on distinct input/data files

- It could be submit several times manually
- Or use job arrays!

An embarrassingly parallel example Resource

SLURM options
partition=ABGC_Std
time=00-08:00:00
array=1-3
ntasks=1
mem-per-cpu=4000
<pre>\$SLURM_ARRAY_TASK_ID (srun) ./myprog</pre>

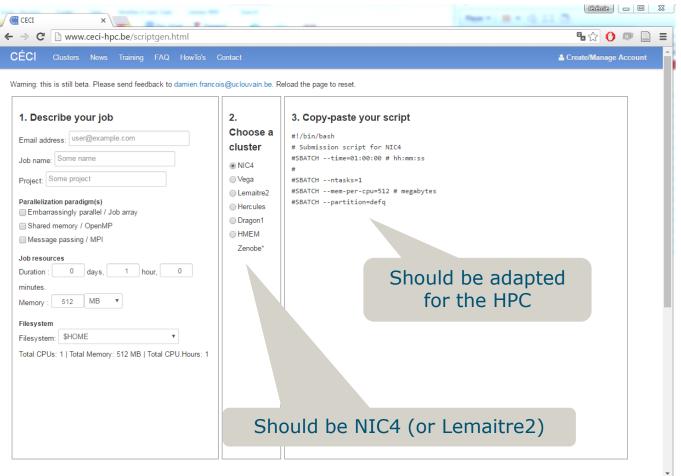
#-----Environment, Operations and Job steps----

echo "Processing the array \$SLURM_ARRAY_TASK_ID"
mkdir simulation_\$SLURM_ARRAY_TASK_ID && cd simulation_\$SLURM_ARRAY_TASK_ID
../QMSim16 ../ex0.prm >out.qmsim
SLURM script

[vande018@nfs01 one_parameter_file]\$

Write a Slurm script to run 4 times the program QMSim16 with 1 thread and a total of 4 GB RAM.

Thank you!


Questions?

Helpful tool

http://www.ceci-hpc.be/scriptgen.html

