High Performance Computing Cluster Advanced course

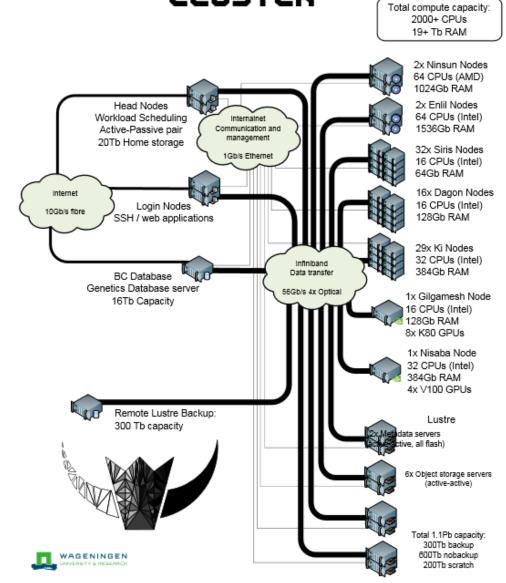
Jeremie Vandenplas, Gwen Dawes

28 May 2019

Outline

- Introduction to the HPC Anunna
- Submitting and monitoring jobs on the HPC
- Parallel jobs on the HPC
- Tips and tricks

Introduction to the HPC Anunna


Jeremie Vandenplas, Gwen Dawes

ANUNNA

WAGENII

For g

HPC Anunna

- 48 Computes nodes
 - 16 cores (Intel), 64 GB or 128 GB RAM
- 29 Computes nodes
 - 32 cores (Intel), 328 GB RAM
- 2 Fat nodes
 - 64 cores (AMD), 1 TB RAM
- 2 Fat nodes
 - 64 cores (Intel), 1.5 TB RAM
- 4x GPU nodes
 - NVIDIA Tesla V10
- 1000 TB Lustre parallel file system (15 GB/s)

HPC Anunna – main storage

Home directory

- /home/[partner]/[username]
- Directory where you are after logon
- Quota of 200GB soft (210GB hard)

Archive

- /archive/[partner]/[username]
- Cheap
- Only for storage and for WUR

HPC Anunna – main storage

Lustre filesystem (faster storage)

- backup
 - /lustre/backup/[partner]/[unit]/[username]
 - Extra cost for backup
- nobackup
 - /lustre/nobackup/[partner]/[unit]/[username]
 - Some costs
- scratch
 - /lustre/scratch/[partner]/[unit]/[username]
 - Free
 - Regularly cleaned up

HPC Anunna – "rules"

Home

- Jobscripts
- Small datasets (performance)
- No computational jobs

Lustre

- Big datasets
- Intensive (computing) jobs
- No job run outside SLURM

Archive

HPC Anunna – useful information

- HPC Anunna wiki
 - https://wiki.anunna.wur.nl/index.php/Main_Page
- HPC Anunna monitoring system
 - https://ganglia.anunna.wur.nl
- Linux User Group at WUR
 - https://lug.wur.nl/index.php/Main_Page
- Support
 - hpc.support@wur.nl

Questions?

Submitting and monitoring basic jobs on the HPC

J. Vandenplas, G. Dawes

Outline

Running a job on the nodes of the HPC

- Introduction to SLURM
- Characteristics of a job
- Writing and submitting a script
- Monitoring and controlling a job
- Tips and tricks
- Types of jobs
 - Sequential
 - Array
 - Shared memory
 - Distributed memory

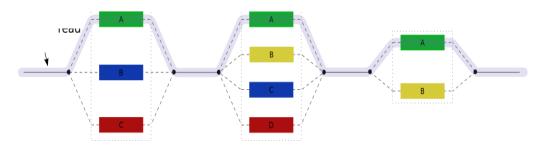
Running a job on the nodes of the HPC?

Job

- An operation or a group of operations treated as a single and distinct unit
- Two parts
 - Resource requests
 - Job steps
 - Tasks that must be done (e.g., software that must be run)
- A job must be submitted to a job scheduler
 Requires a (shell) submission script

Job scheduler/Resource manager

- HPC's job scheduler: SLURM (Simple Linux Utility for Resource Management ; http://slurm.schedmd.com/slurm.html)
- Software which:
 - Manages and allocates resources (compute nodes)
 - Manages and schedules jobs on a set of allocated nodes
 - Sets up the environment for parallel and distributed computing


workload manager

Some definitions

Process

- Instance of a computer program that is being executed
- May be made up of multiple threads that execute instructions concurrently
- Thread
 - Smallest sequence of programmed instructions

Some definitions for Slurm

Task

- In the Slurm context, it must be understood as a process.
- CPU
 - In the Slurm context, it can be understood as a core or a hardware thread.
- Multithreaded program
 - One task using several CPUs
- Multi-process program
 - Several tasks

Running a job on the nodes of the HPC?

Several steps

- 1. Characteristics of the jobs?
- 2. Writing a submission script
- 3. Submitting a job
- 4. Monitoring and controlling a job
- 5. Getting an overview of previous and current jobs

1. Characteristics of the job

What is your job?

- Sequential/parallel
- Resource requests
 - Number of CPUs
 - Amount of RAM
 - Expected computing time
 - ...
- Jobs steps
 - Job steps can be created with the command srun

1. Characteristics of the job

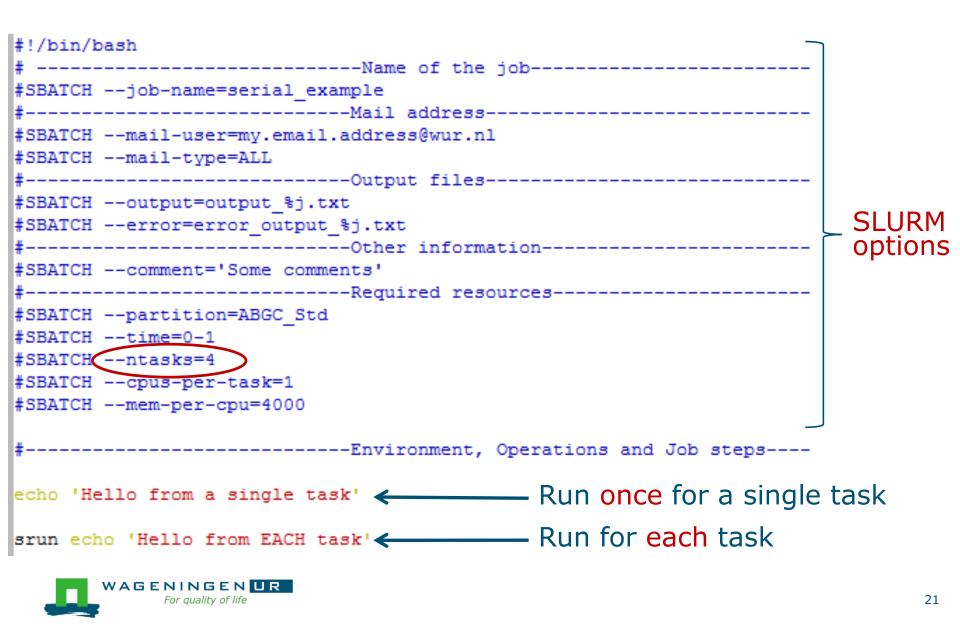
What is your job?

- Sequential/parallel
- If parallel: multi-process vs multi-threaded?

→How can you know it?

- RTFM!
- Read the source code (if available)
- Just run it!

→use *sinteractive*!


1. Characteristics of the job

Try to fit to the real use as much as possible!

- Try to ask
 - 4 GB RAM per CPU for nodes with 64 GB
 - 8 GB RAM per CPU for nodes with 128 GB
 - 10.2 GB RAM per CPU for nodes with 328 GB
 - 15.6 GB RAM per CPU for nodes with 1 TB
 - 23.4 GB RAM per CPU for nodes with 1.5 TB

2. Writing a submission script

The Slurm command *srun*

srun [options] executable [args]

- Run a parallel job on cluster
- Useful options

Option	Report
-c= <ncpus></ncpus>	Request that ncpus allocated per process
-n= <number></number>	Specify the number of tasks to run

The Slurm command srun

[wanda0180nfe01 wanda01810

```
IAGUAGOTOGUITOAT AGUAGOTOIA
        [vande018@nfs01 vande018]$ cat script slurm.sh
        #!/bin/bash
        # -----Name of the job-----
        #SBATCH --job-name=serial example
        #SBATCH --mail-user=my.email.address@wur.nl
        #SBATCH --mail-type=ALL
        #SBATCH --output=output %j.txt
        #SBATCH --error=error output %j.txt
        #SBATCH --comment='Some comments'
        #SBATCH --partition=ABGC Std
        #SBATCH --time=0-1
        #SBATCH --ntasks=4
        #SBATCH -- cpus-per-task=1
        #SBATCH --mem-per-cpu=4000
                     -----Environment, Operations and Job steps----
        echo 'Hello from a single task'
        srun echo 'Hello from EACH task'
        [vande018@nfs01 vande018]$
        [vande018@nfs01 vande018]$ cat output 10969988.txt
        Hello from a single task 🔶 🗕
        Hello from EACH task
        Hello from EACH task
WAGENIN(Hello from EACH task
    For qualiHello from EACH task
        [vande018@nfs01 vande018]$
```

Some SLURM options

You want	SLURM option
To set a job name	job-name="job1"
To get emails	mail-user=name.name@wur.nl mail-type=BEGIN END FAILED ALL
To set the name of the output files	output=output_%j.txt error=error_output_%j.txt
To attach a comment to the job	comment="abcd"

Some SLURM options: resource

I	
You want	SLURM option
To choose a partition	partition=ABGC_Low Std High
To choose a specific feature (e.g., a regular compute node)	constraint=normalmem largemem
12 hours	time=0-12:00:00
3 independent processes	ntasks=3
3 independent processes to spread across 2 nodes	ntasks=3ntasks-per-node=2
3 processes that can use each 2 cores	ntasks=3cpus-per-task=2

4000MB per cpu

--mem-per-cpu=4000

Some SLURM options: partitions

xxxx_Low

- Limited time (8h)
- Very cheap
- xxxx_Std
 - No limit
- xxxx_High
 - No limit + extra costs

XXXX = ABGC/ESG/GUESTS/EDUCATION/...

Some SLURM options: features

- 128g/384g/1019g/1536g/normalmem/largemem/morem em
 - Nodes with specific RAM
- 16cpus/32cpus/64cpus
 - Nodes with a specific total number of CPUs
- 4gpercpu/8gpercpu/16gpercpu/24gpercpu
- nvidia/K80/V100
 - Nodes with GPUs
- Amd/avx512/intel
 - Nodes with specific processors
- dagon/enlil/gilgamesh/ki/ninsun/siris/gen2

3. Submitting a job

The scripts are submitted using the sbatch command

-	jvandenp@localhost:~ 91×42
[vande018@nfs01	shared_memory]\$ ls
ex0_mthread.prm	QMSim16 script_slurm.sh
[vande018@nfs01	shared_memory]\$
[vande018@nfs01	shared_memory]\$ sbatch script_slurm.sh
Submitted batch	job 1120242

- Slurm gives an ID to the job (\$JOBID)
- Options may be passed from the command line
 - E.g., sbatch --ntasks=3 script_slurm.sh
 - Will override value in script
- See Gwen 's tips and tricks

4. Monitoring and controlling a job

Commonly used commands to monitor and control a job

- squeue
- scancel
- sprio
- scontrol

More details in Gwen's presentation

4. Monitoring and controlling a job*squeue*

squeue [options]

- View information about jobs located in the SLURM scheduling queue
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report time limit
start	Report the expected start time of pending jobs
-u <user_id_list></user_id_list>	Report for a list of users

4. Monitoring and controlling a job *squeue*

.				V	ande018@node02	0:~ 92×46
[vande018@n	fs01 ar	nag]\$ \squ	Jeue			
JOBID PAR	ITION	NAME	USER	ST	TIME	NODES NODELIST(REASON)
1092677 AB	GC Low	asreml R	pelt006	R	22-10:04:41	1 node001
1120251 AB	GC_Low	calcgrm	vande018	R	45:25	1 node006
1119982 AB	GC_Low	run PLIN	calus001	R	9:24:43	1 node021
1119972 AB	GC_Low	run_PLIN	calus001	R	9:51:53	1 node013
1083998 AB(GC_Std	STELLS	otten030	R	51-16:42:46	1 fat001
1109401 AB	GC_Std	AG_Prove	derks047	R	21-05:28:18	1 fat001
1119974 AB	GC_Std	beagle41	bouwm024	R	9:44:30	1 node020
1119973 AB	GC_Std	beagle41	bouwm024	R	9:48:50	1 node019
1119957 AB	GC_Std	AG_MS_VC	derks047	R	10:34:59	1 node007
1119856 AB(GC_Std	F17Run28	tengh001	R	2-23:17:01	1 node001
1118228 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node005
1118229 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001
1118230 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node001
1118231 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node002
	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node002
1118233 AB	GC_Std	run_m8.s	calus001	R	5-22:50:59	1 node004

4. Monitoring and controlling a job scancel

scancel [options] [job_id[.step_id]...]

• Cancel jobs or job steps

Monitoring and controlling a job sprio

sprio [options]

- View the components of a job's scheduling priority
- Rule: a job with a lower priority can start before a job with a higher priority IF it does not delay that jobs's start time
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
-1	Report more information
-u <user_id_list></user_id_list>	Report for a list of users

4. Monitoring and controlling a job *scontrol*

scontrol [options] [command]

- View Slurm configuration and state
- Update job resource request
- Work only for running jobs
- Useful option
 scontrol show job JOB_ID
 →Lots of information

5. Getting an overview of jobs

Previous and running jobs

- sacct
- Running jobs
 - scontrol
 - sstat
- Previous jobs
 - Contents of emails (--mail-type=END|ALL)

5. Getting an overview of jobs *sacct*

sacct [options]

- Display accounting data for all jobs/steps
- Some information are available only at the end of the job
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of jobs *sacct*

<mark>.</mark> [vande018@nfs0	1 anag]\$ jobid=1120	217				jvandenp@localhost:~
	1 anag]\$ sacct -j	\$jobidfo		, ,	u 1	[md
	JobID	Submit	Ell(gible	Start	End
1120217 1120217.batch [vande018@nfs0		6:30:12 201 \$jobidfo	6-03-29T16:3	30:12 2016-0	3-29T16:30:12 2016 3-29T16:30:12 2016 e,AveRSS,MaxVMSize	03-29T16:30:14
1120217 1120217.batch	_555872K	83432K	555872K	83432K		

5. Getting an overview of running jobs *sstat*

sstat [options]

- Display various status information of a running job/step
- Work only if srun is used
- Useful options

Option	Report
-j <job_id_list></job_id_list>	Report for a list of specific jobs
format	Comma separated list of fields

5. Getting an overview of running jobs **sstat**

		j	vandenp@localhost:~	92x46			
	xVMŠize MaxVM MaxPages MaxP	SizeNode agesNode	MaxVMSizeTask MaxPagesTask nsumedEnergy	AveVMSize AvePages		MaxRSSNode M MinCPUNode M	
0 62096348K 0 58:12.000	1	node006 node006 972295		90449472K 31K	62096348K 58:12.000	node006 node006	
[vande018@nfs01 JobID 1120251.0 58 [vande018@nfs01	AveCPU Av :55.000_ 62096	eRSS N	MaxRSS 96348K	n35, Maxn35	-) 1120231		

5. Getting an overview of jobs *emails*

Displays time, memory and CPU data

	From: root <root@master1.hpcagrogenomics.wur.nl></root@master1.hpcagrogenomics.wur.nl>			
5. Ge	To: Vandenplas, Jeremie			
	Subject: SLURM Job_id=1452680 Name=snpblup Failed, Run time 00:43:24, FAILED, ExitCode 1			
000	Final State: FAILED			
ema				
	Time data:			
	JobID Submit Eligible End Timelimit Elapsed			
	1452680 2017-06-01T11:05:46 2017-06-01T11:05:46 2017-06-01T15:57:28 1-00:00:00 00:43:24			
	1452680.batch 2017-06-01T15:14:04 2017-06-01T15:14:04 2017-06-01T15:57:28 00:43:24			
Displ	Memory data:			
	JobID ReqMem AveVMSize AveRSS MaxVMSize MaxRSS			
	1452680 4000Mc			
	1452680 4000Mc 79868064K 48562480K 79868064K 48562480K			
	CPU data:			
	JobID NCPUS NTasks CPUTime UserCPU SystemCPU TotalCPU AveCPU MinCPU			
	1452680 16 11:34:24 39:07.705 04:10.573 43:18.279			
	1452680.batch 16 1 11:34:24 39:07.705 04:10.573 43:18.279 00:42:53 00:42:53			
	Accounting Data:			
	Current resource costs:			
	TYPE COST TIME Std 0.049 2017-01-01 00:00:00			
	High 0.099 2017-01-01 00:00:00			
	Low 0.025 2017-01-01 00:00:00			
	home 400.0 2017-01-01 00:00:00			
	scratch 0.0 2014-12-12 15:52:06			
	backup 400.0 2017-01-01 00:00:00			
	nobackup 200.0 2017-01-01 00:00:00			
	USER: vande018			
	Disk costs			
	backup: 0.0 EUR			
	home: 0.0 EUR			
	nobackup: 0.0 EUR			
	scratch: 0.0 EUR TOTAL: 0.0 EUR			
WAG				
WAG	Total number of jobs: 39			
	Compute costs by Partition			

Information on the HPC

/cm/shared/apps/accounting/node_reserve_usage_graph

Activitás	🗵 Terminator ▾ ven 2 jun, 12:11 遼 25,2 ℃ 资 en ▾ 🍿 🖗 ▾
Activites	
	vande018@node006:~ _ ¤ ×
₽	vande018@node006:~ 190x52
[vande0] node:	8@nfs01 training_slurm]\$ /cm/shared/apps/accounting/node_reserved_usage_graph 0%
fat002.	
node001:	333333333333333333333333333333333333333
node002	
noueooz.	
node003	
node004	23
node005	
hodeoos	
node006	32
	ММММММ
node007:	
node008:	
node009	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
node010	ССССССССССССССССССССССССССССССССССССССС
node011:	
node⊍⊥∠:	
node013:	
node014:	ССССССССССССССССССССССССССССССССССССССС
node015:	
node016:	
node017:	200000000000000000000000000000000000000
node018:	
node019	30
node020:	
node021	
node022	
nodo022	

node023:

Information on the HPC

- /cm/shared/apps/accounting/node_reserve_usag
 e_graph
- /cm/shared/apps/accounting/get_my_bill
- sinfo
- scontrol show nodes
- https://wiki.hpcagrogenomics.wur.nl/index.php/L og_in_to_B4F_cluster

Gwen 's presentation

- Scontrol
- Sbatch

. . .

Dependencies

Parallel jobs on the HPC Anunna

Jeremie Vandenplas, Gwen Dawes

Some jobs and their option requirements

- Serial example
- Embarrassingly parallel example
- Shared memory example
- Message passing example

A serial example

You run one (several) program(s) seriallyThere is no parallelism

A serial example: resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
1 independent process	ntasks=1
4000MB per CPU	mem-per-cpu=4000
You use	(srun) ./myprog

A serial example: script

#!/bin/bash
job
#SBATCHjob-name=multiple datafiles
#Mail address
#SBATCHmail-user=jvandenplas@ulg.ac.be
#SBATCHmail-type=ALL
#Output files
#SBATCHoutput=output_%j.txt
#SBATCHerror=error_output_%j.txt
#antion
#SBATCHcomment='Some comments'
#Required resources
#SBATCHpartition=ABGC_Low
#SBATCHtime=0-1
#SBATCHntasks=1
#SBATCHmem-per-cpu=4000
Operations and Job steps
srun ./QMSim16 ex0.prm
~

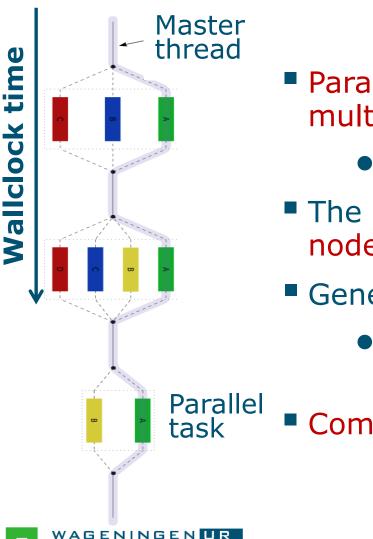
An embarrassingly parallel example

- Parallelism is obtained by launching the same program multiple times simultaneously
- Everybody does the same thing
- No inter-process communication
- Useful cases
 - Multiple input/data files
 - Random sampling
 - ...

An embarrassingly parallel example Multiple input/data files

The program processes input/data from one file
 Launch the same program multiple times on distinct input/data files

- It could be submit several times
 - manually
 - with some tricks (loops, srun environment variables,...)
- Or use job arrays!


An embarrassingly parallel example Resource

You want	SLURM options
To chose a partition	partition=ABGC_Std
8 hours	time=00-08:00:00
6 processes to launch 6 completely independent jobs	array=1,3-5,8
3 processes to launch 3 completely independent jobs (2 at a time)	array=1-3%2
1 process per array	ntasks=1
4000MB per CPU	mem-per-cpu=4000
You use	\$SLURM_ARRAY_TASK_ID (srun) ./myprog

```
₽₽
[vande018@nfs01 one parameter file]$ more script slurm.sh
#!/bin/bash
# -----Name of the job-----
#SBATCH --job-name=multiple datafiles
#-----Mail address-----
#SBATCH --mail-user=jernplas@wur.nl
#SBATCH --mail-type=ALL
#-----files-----files-----
#SBATCH --output=output_%j *** Useful: %A_%a
#SBATCH --error=error_output_%j.txt
#-----Other information-----
#SBATCH --comment='Some comments'
#-----Required resources-----
#SBATCH --partition=ABGC Low
#SBATCH --time=0-1
                           _____ 3 array jobs
#SBATCH --array=1-3
                                 (from 1 to 3)
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4000
#-----Environment, Operations and Job steps----
echo "Processing the array $SLURM ARRAY TASK ID"
mkdir simulation $SLURM ARRAY TASK ID && cd simulation $SLURM ARRAY TASK ID
../QMSim16 ../ex0.prm >out.qmsim
                                               SLURM script
```

[vande018@nfs01 one_parameter_file]\$

A shared memory example

- Parallelism is obtained by launching a multithreaded program
 - E.g., using OpenMP or TBB
- The program spawns itself on the node
- Generally run job on a single node
 - The threads cannot be split across several nodes
- Communication by shared memory

A shared memory example: resource

You want	SLURM options		
To chose a partition	partition=ABGC_Std		
8 hours	time=00-08:00:00		
1 process that can use 3 cores for multithreading	ntasks=1cpus-per-task=3		
4000MB per CPU	mem-per-cpu=4000		
You use	export OMP_NUM_THREADS=3 (export MKL_NUM_THREADS=3) (srun) ./myprog		

Run the job on a single node with

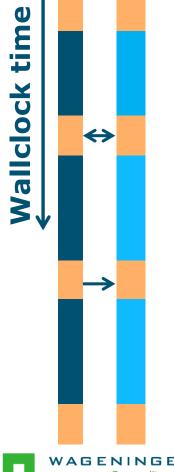
- max. 3 threads
- max. RAM = 3*4000=12000 MB

A shared memory example: script

jvandenp@localhost:~ 91x42
[vande018@nfs01 shared_memory]\$ ls
ex0_mthread.prm QMSim16
[vande018@nfs01 shared_memory]\$ more script_slurm.sh
#!/bin/bash
#
#SBATCHjob-name=multiple_datafiles
#Mail address
#SBATCHmail-user=jeremie.vandenplas@wur.nl
#SBATCHmail-type=ALL
#output=output %j.txt
#SBATCHerror=error_output_%j.txt
#Other information
#SBATCHcomment='Some comments'
#Required resources
#SBATCHpartition=ABGC_Low #SBATCHtime=1-0:0:0
#SBATCHntasks=1
#SBATCHcpus-per-task=3
#SBATCHmem-per-cpu=4000
#Bnvironment, Operations and Job steps
export OMP_NUM_THREADS=3
./QMSim16 ex0_mthread.prm SLURM script

Pitfalls

Using --ntasks=n for shared memory programs
 Could work or not!


→Use --ntasks=1 --cpus-per-task=*n*

Forgetting to mention the number of threads to the shared memory program (e.g., OpenMP programs)

→Add export OMP_NUM_THREADS=1 to your ~/.bashrc

A message passing example

- Parallelism is obtained by launching a multiprocess program
 - E.g., MPI, PGAS (Coarray Fortran, UPC)
- One program spawns itself on several nodes
- Inter-process communication by the network

A message passing example: resource

You want	SLURM options	
To chose a partition	partition=ABGC_Std	
8hours	time=00-08:00:00	
3 processes for use with MPI that can use 1 core for multithreading	ntasks=3cpus-per-task=1	
4000MB per CPU	mem-per-cpu=4000	
You use	Module load mpi_library mpirun myprog	

Run the job on max. 3 nodes with max. RAM = 3*4000=12000 MB

A message passing example: script

```
H.
                       jvandenp@localhost:~ 78x27
[vande018@nfs01 message passing]$ ls
hello.c hello.mpi script slurm.sh
[vande018@nfs01 message passing]$ more script slurm.sh
#!/bin/bash
# -----Name of the job-----
#SBATCH --job-name=multiple datafiles
#-----Mail address-----
#SBATCH --mail-user=jeremie.vandenplas@wur.nl
#SBATCH --mail-type=ALL
#-----Output files-----
#SBATCH --output=output %j.txt
#SBATCH --error=error output %j.txt
#SBATCH --comment='Some comments'
#-----Required resources-----
#SBATCH --partition=ABGC Low
#SBATCH --time=1-0:0:0
#SBATCH --ntasks=4
#SBATCH --cpus-per-task=1
#SBATCH --mem-per-cpu=4000
#-----Bnvironment, Operations and Job steps----
module load openmpi/gcc/64/1.10.1
#mpicc hello.c -o hello.mpi
mpirun hello.mpi
```


Pitfalls

Using --ntasks=n for shared memory programs

• Could work or not!

→Use --ntasks=1 --cpus-per-task=*n*

Forgetting to mention the number of threads to the shared memory program

→Add export OMP_NUM_THREADS=1 to your ~/.bashrc

■ Shared memory program OR message passing program?
→RTFM!

→ Check the output of *top* with a small example!

A mixed example

A parallel job can included different parallelization paradigms!

You want	SLURM options		
To chose a partition	partition=ABGC_Std		
8 hours	time=00-08:00:00		
4 processes that can use 3 cores for multithreading	ntasks=4cpus-per-task=3		
4000MB per CPU	mem-per-cpu=4000		
You use	Module load mpi_library export OMP_NUM_THREADS=3 (export MKL_NUM_THREADS=3) mpirun myprog		

Summary: resource requests

- Choose the number of processes (--ntasks)
- Choose the number of threads per process (--cpu-pertask)
- Set environment variables (OMP_NUM_THREADS, MKL_NUM_THREADS,...)
- Use SLURM environment variables if required
- Launch processes with srun or mpirun if required

Thank you!

Questions?

